
Exploit Writing Using
Injectable Virtual

Machines
Wes Brown - Scott Dunlop

Ephemeral Security

What?
Mosquito is a lightweight framework to deploy and run code
remotely and securely, in the context of penetration tests.

It makes a best effort to ensure that communications are secure.

Special care is taken to ensure that deployed code is not stored
outside of process memory space.

It protects the confidentiality and trade secrets of code that is
deployed and run on the target. This could be an exploit, or a
methodology.

Why?
Often it is desirable to leverage ‘0-day’ code, but doing so in an
uncontrolled fashion can have repercussions.

Many practices have trade secrets and methodologies distilled in
the form of audit or exploit code that they would like to keep out
of the target’s hands.

It is a means to ensure that communications between the target
and the console is secure.

Provides a dynamic remote execution environment, allowing ‘in-
flight’ modifications.

Technical Overview

Production-ready Code

Virtual Machine Environment - MOSVM

Language - Mosquito Lisp

AES, and ECDH Encryption

Extremely Portable (win32, OpenBSD, Darwin, Linux)

Virtual Machine (MOSVM)

Lightweight and optimized for network tasks

Easily extensible

Lisp-family language with Schemish attributes

Pure ANSI-C, portable (OpenBSD, Darwin, Linux, win32)

Integrated ECDH, AES encryption with very good entropy
generation.

Mosquito Components

Core - Virtual Machine

Environment - Mosquito Lisp environment and Libraries

Console - Provides user with interface to manage and deploy
drones.

Drone - Provides a remote process that contacts its matched
Console and executes scripts and statements on its behalf.

Core (MOSVM)
Virtual Machine, with a Mosquito Lisp language compiler and
environment for it.

Integrates low level bindings such as libtomcrypt and regex.

‘Stub’ to append byte-code compiled libraries and programs to.

Very small and compact.

Very easy to write code in.

Allows standalone executables with no dependencies.

Environment (Mosquito)

Mosquito Lisp functions and libraries.

Goodies such as XML parsing, regex, HTTP server in library.

As little or as much as wanted can be attached to the virtual
machine stub.

Libraries can be dynamically pulled across the network.

Well documented with reference available online.

Drone
Virtual Machine + Crypto + Drone Functionality

Highly optimized to reduce size

Debugging and errors are resolved by the Console, to reduce
strings.

Does not include bytecode compiler; all compilation is handled
by the Console.

Executes and receives bytecode from Console.

Bytecode sent by Console is only stored in process memory.

Console

Virtual Machine + Crypto + Console Functionality

Provides a local process to control deployed Drones.

Provides full Mosquito Environment.

Includes compiler.

Interface for interacting with Drones in real time.

Creates Drones when requested using stub functionality.

Channels (Overview)

Language feature, allowing for abstracted communications.

A cryptographic channel is provided.

Transparent negotiation implemented on top of channels.

Provides a layer of abstraction from the actual communications
mechanism in use.

Programs do not care how communications are handled.

Uses of Framework

Refactor exploits into Mosquito Lisp for secure deployment on
target.

Easily extensible.

Network and host reconnaissance code management and results
over a secure channel.

Simplify deployment of auditing tools to hosts; all dependencies
are included with the Drone and managed by the Console.

Demonstration

Quick walkthrough of Mosquito Environment.

Compiler

Examples

Reference Manual

Exploit Writing
Exploit writing in MOSVM is very easy.

Demonstration

Writing Exploit.

Demonstrate injecting a Drone using Exploit.

Writing second Exploit.

Demonstrate injecting a Drone using second Exploit, using
the injected Drone from the first exploit.

Who Are We?

Wes Brown (wbrown@ephemeralsecurity.com)

Founder

Scott Dunlop (swdunlop@ephemeralsecurity.com)

Developer

http://www.ephemeralsecurity.com/ for more information.

Questions?

Live question and answer

Mailing list available.

Code is available via LGPL from
http://www.ephemeralsecurity.com/

