

Why or Why Not MANET?

Ideals

- Allows seamless roaming
- Works when infrastructure breaks
- Routing does not require administration
- Functional in hostile environments
- Farther from the Shannon curve due to lower typical transmission distance

Problems

- Network scalability
- Effective, voluntary security

Mobile Networking

- People move a lot
- Fast dynamic routing is a hard problem
- Infrastructure solutions are much easier
- Hybrid infrastructure (or "fixed mesh") reduces the problem somewhat
- People want a real solution

Here Comes the Science

- Major types of network routing protocols
 - Link State
 - Dyjkstra SPF algorithm
 - Example: OSPF
 - Distance-Vector
 - Bellman-Ford algorithm
 - Example: RIP
 - Policy Based
 - Policies override core DV or LS style routing algorithms
 - Example: BGP

Distance-Vector Routing

- Values
 - Each device has a unique address
 - Applications don't distinguish transports
 - Robust during partial failure
 - Perceived to be much more natural by users
 - Allows for a high mobility index
- Challenges
 - High processing complexity
 - High message complexity

Link State Routing

- Values
 - Low processing and message complexity
 - Comparatively inexpensive
- Challenges
 - Each interface has a unique address
 - Applications may require transport specific information, such as locally bound IP address
 - Exceptionally unnatural to users
 - Demands a low mobility index

Godzilla Versus Dyjkstra

- Places where LSR (or equivalents) wins
 - The Internet (except as noted below)
- Places where DVR (or equivalents) wins
 - Mesh networks
 - Interior gateway routing
 - Border gateway routing
 - Games and Al

Infrastructure-Mode Wi-Fi

- Immobile
 - Wired equivalency tether
 - Must sacrifice bandwidth exponentially to increase radius linearly
- Inefficient
 - Peer to peer messages eat double bandwidth
 - Close security model requires user intervention

Fixed Mesh Wi-Fi

- Marginal improvement at best
 - Client devices still tethered
 - Same scalability problems among access points
 - Reliable fail-over only by sacrificing footprint
 - Does nothing to improve disaster scenario
 - Worse spectrum allocation
- Lagging standard not due until 2008

What We Really Want

- Peer to peer network
 - Excellent security
 - VOIP and 3GPP reliable delivery
 - Automatic discovery
 - Maximum mobility
 - User defined network policy

Understanding the Link Layer

- Understanding mesh links
 - Nodes beacon to provide carrier sense
 - Discover peers automatically
 - Infer link quality from beacon packet reception
 - Acknowledge high quality beacons
 - Translate link quality into link metric, e.g.:
 - For 802.11b, 99% beacon reception implies about 1200 millisecond expected transmission delay
 - 40% reception implies nearly infinite delay

Attacking the Link Layer

- Eavesdropping
 - Discover participants and topology
 - Retrieve public keys (identity tracking)
 - Content interception
- Sybil Attack
 - Greeting flood
 - Storage or processing denial of service

Attacking the Link Layer

- Greeting and acknowledgement replay
 - Causes link quality overestimate
 - Causes degenerate routing
 - Increases processing and storage requirements
 - Wormhole attack
 - Previous work here by S. Swami and others
 - Will discuss in more detail as a routing layer attack

Attacking the Link Layer

- Unauthorized access
 - Bandwidth reduction
 - Perimeter intrusion
- Selective jamming
 - Freeze the Wi-Fi MAC layer
 - Underestimate link quality
 - Isolate and conquer

Securing the Link Layer

- Link Cryptography
 - DH/DSA key exchange
 - Gives clear cryptographic session definition
 - Prone to computational denial of service attacks
 - Work tokens
 - Defend against DOS
 - Leverages desire to join against computation requirements

Securing the Link Layer

- Link Cryptography (continued)
 - Signed broadcasts
 - Exceptional computational cost
 - Prevents wormholes and other forgery attacks
 - Certified identity
 - Translates node identity into comprehensible string
 - Allows user control of policy
 - Impedes unauthorized access

Securing the Link Layer

- Other Techniques
 - Jittered timers
 - Greatly reduces risk of sniping
 - Makes selective jamming very difficult
 - Transient MAC address
 - Avoid manufacturer profiling
 - Cycle periodically to throw off listeners

Avenues for Future Research

- Acknowledgement of hidden nodes
 - Destroy two-hop topology graph
- Ubiquitous acknowledgement
 - Desynchronize link quality estimation
 - Ideal denial of service to perfect links
 - Like a rushing attack, but "from the future" rather than just "faster than allowed"

Understanding the Routing Layer

- Routing is a geometric problem
 - Link quality is driven by signal to noise ratio
 - Signal decreases with the square of distance
- Example
 - $-1^2+2^2<3^2$; thus
 - -AB + BC < AC; thus
 - A should route through
 B to reach C

Understanding the Routing Layer

- Understanding mesh routes
 - Advertisement based, e.g.:
 - Node R hears about node O through node P
 - "Receiver hears about Origin through nearby Peer"
 - Shorthand [R: P->O]
 - Requires temporal quality metric, e.g.:
 - Node R expects a message through P to take 3500 milliseconds
 - Shorthand [R: P = 3500]

Understanding the Routing Layer

- Understanding mesh routes (continued)
 - Metric sums over multiple hops, e.g.:
 - [P: O = 3500]
 - [R: O = 3000]
 - [R: P->O = 3500]
 - R->O = 6500
 - Algorithms need help to avoid routing loops
 - Must never accept older or slower information
 - Must track edition numbers to deal with asynchronicity

Attacking the Routing Layer

- Refusal to participate
 - Black hole
 - Drop all data packets
 - Very easy to detect
 - Gray hole
 - Drop some data packets
 - Discoverability proportional to packet drop ratio

Attacking the Routing Layer

- Underestimating distance
 - Wormhole
 - Requires sideband packet forwarding
 - Absorbs all traffic within (H-1)/2 hops radius
 - Invariant violation
 - Causes routing loops which may become packet storms
- Rushing attacks
 - Exploits "First past the post" duplicate removal algorithm
 - Example: DNS response spoofing

Attacking the Routing Layer

- Invisible "Million Man March"
 - Sybil attack on steroids
 - Flattens scaling topology
 - Destroys local routing efficiency

Defending the Routing Layer

- Trust-based link selection
 - Assume minimal trust of each peer initially
 - Increase trust slowly, decrease rapidly
 - Apply trust multiplier to advertised link cost
 - Contains and localizes damage by harming reputation of naïve intermediaries

Defending the Routing Layer

- Signed control messages
 - Computationally expensive
 - Eliminates rushing and wormhole attacks
- End-to-end validity probe
 - Augment trust metrics with cryptographically secure data or control message
 - Makes Sybil attacks expensive since identities are periodically required to respond

Conclusions

- With MANET we can have...
 - Discovery
 - Identity
 - Quality
 - Efficiency
- But first we need...
 - Scalable routing algorithm
 - Hardware cryptography
 - Fixes for 802.11 Ad Hoc

Going Forward

- What you can do to hurry the future
 - Seek out and play with emerging protocols
 - Develop P2P phone applications
 - Demand hardware crypto on small devices
 - Use Thin-MAC wireless cards
 - Hack It!