
Well, really, just SRCDS, but who really cares?

Bruce Potter, Logan Lodge

gdead@shmoo.com, L0l0@shmoo.com

!! Gaming is a USD47 billion global market.

!! Console gaming alone is estimated to be USD27 billion in size.

!! PC online games is a USD6.5 billion industry. Projected to be

USD13 billion by 2012.

!! Online MMOGs is a USD3.5 billion industry.

!! Casual gaming is a USD1.5 billion industry.

!! Read more:

http://www.techvibes.com/blog/gameon-finance-2.0-key-gaming-

industry-trends-and-market-overview#ixzz0Ch84uUJ0&B

!! At least not talking about them in a coherent

fashion

!! There are a lot of reviews that focus on gameplay

!! There are industry analysis sites

!! There are many reviews of gaming hardware

!! Few public discussions of security

!! Few public discussions regarding the merits and impact

of underlying technology

!! Beginning to see cultural/anthropological discussions

!! Publisher provided game servers

!! Pretty much all console gaming

!! Some PC games such as WoW

!! Community driven game servers

!! What drives people to run game servers?

!! It’s a lot like OSS

!! Convenience, fame, money, fun

Call of Duty

•! CoD2

•! CoD4

•! CoD WW

Half-Life

•! Half Life

•!TFC

•! Counter

Strike

Source

Engine

•! HL2DM

•!TF2

•! Left4Dead

•! CS:Source

Battlefield

•! BF

•! BF2

There are
others.. Quake,

UT, etc..

!! Why?

!! Valve has created a platform that not only supports

their needs, but allows for massive amounts of

customization

!! Huge number of servers deployed

!! Gametracker.com has CS:S as #2 (10700 Servers, 25000

players), L4D as #6 (3000 Servers, 3000 Users), TF2 as #9

(2300 Servers, 8500 Users) at 8pm on a Monday

!! Steam has ~1.5Million active users each day… many of them

playing Source-based games

!! The real reason: I play a LOT of TF2

!! 150 hours on demoman.. Yeah, it’s a problem

!! The big challenge: provide a good gaming

experience for the person with a 1.6GHz PIV on a

256k DSL line and a person with an i7 on the ass

end of a 25Mbps FIOS connection

256k
bps

768kbps

!! SRDS is a complex piece of software

!! Tries to provide Real Time service on OS’s that aren’t RTOS

!! Enforces complex mathematical models of where players are,

where they are going, and what they’re doing

!! Distributes content to clients that need it

!! Attempts to control cheating

!! Allows spectating of the matches

!! Supports remote administration

!! Is highly extensible

!! Pretty impressive for free

!! But then again, the better it is, the more people will stand up

servers, and the more people will buy the client and play

!! Simple premise

!! Simple premise is key

!! Pong had 8 words on front… “Avoid missing ball for high

score” and “Insert coin”

!! Red team? Kill Blue.

!! Blue team? Kill Red.

!! Sometimes there’s a cart, or flag, or something.. But

mostly it’s about destroying the other side

!! Attention to detail on art direction and

supporting technology

!! Seriously, take a look at this

!! http://www.valvesoftware.com/publications/2007/

NPAR07_IllustrativeRenderingInTeamFortress2_Slides.pdf

!! You can’t always be sitting in front of your

server to change the settings

!! RCON is the SRCDS mechanism for sending game

commands to the server

!! Change number of rounds, rates, level, ban, kick, etc..

!! Can be sent through the game via console

!! Also third party scripts like SRCDS.py

!! DANGER: RCON access is functionally equivalent

to shell access

!! Can execute programs and save files with the

privilege of the user running SRCDS

!! Don’t run as root!

!! SRCDS has a robust set of third party plug-ins

!! Custom sounds

!! Gameplay modifications

!! Protection mechanisms

!! Server administration

!! Kicks/bans

!! MetaMod, as an example, provides a clean

interface for plugin writers to the SRCDS

engine

!! SourceMod is a popular admin and gameplay mod

engine that uses MetaMod

!! Rather than giving out RCON passwords, use

something like SourceMod

!! Valve releases patches that can be applied

automatically via their update tool

!! Valve releases patches… uh.. “whenever” Can be

disruptive to server admins

!! SRCDS is highly optimized for different

platforms

!! Patches can cause issues on AMD but not Intel, for

example

!! Different games can be broken by different

patches

!! Over time, the games bloat.. Count on it

!! Cheating comes in many shapes and sizes

!! With SRCDS, there are many cheating mechanisms

“built in”

!! Materials, sounds, etc can all be customized on both

the server and the client side

!! Obviously, can be used to make the game more unique

and fun

!! It can also be used to give yourself an advantage

!! It’s a movie… doesn’t work in a PDF. Download

this preso from www.nomoose.org to watch

!! It’s a movie… doesn’t work in a PDF. Download

this preso from www.nomoose.org to watch

!! It’s a movie… doesn’t work in a PDF. Download

this preso from www.nomoose.org to watch

!! It’s a movie… doesn’t work in a PDF. Download

this preso from www.nomoose.org to watch

!! It’s a movie… doesn’t work in a PDF. Download

this preso from www.nomoose.org to watch

!! Valve implemented a game variable, sv_pure, to

try and control this

!! Sv_pure=0 is the default. No enforcement

!! Sv_pure=1 causes the client to scan the materials,

sounds, and models to verify they’re the same as the

original Valve content

!! Some custom content is allowed (sprays and such)

!! Custom materials can be whitelisted server side

!! Sv_pure=2 results in no custom content

!! Sv_pure increases load time

!! Sv_pure uses CRC32

!! Finding a collision in CRC32 is a bit easier than MD5 ;)

!! Darkstorm is a publicly available cheat written by

Kalvin (http://www.projectvdc.com/wordpress/) and

other members from the Game-Deception web

forum Credits to: (Patrick, wav, tabris, Lawgiver,

aVitamin, gir489, CampStaff, and s0beit)

!! Open source code

!! Written in C++

!! Lots of cheats available

!! Load our DLL

!! Standard DLL injection techniques apply

!! Get Process ID (via: name of Window or Process name)

!! Allocate space in process' virtual address space

!! Create a remote thread in the target's process space and

have it kick off your DLL

!! Darkstorm injects into the hl2.exe process

!! Remove the PE header

!! Unlink our module from the PEB linked list

!! Detours to hook various API calls

!! PE Randomizer to make signature based

detection more challenging (credit: cht1)

!! These methods sound familiar…where have we

seen them before? Virus? Userland rootkit?

!! Darkstorm only uses one of these methods

(contains code for PEB unlinking, but not in use)
void CMemoryTools::RemovePEHeader(DWORD dwModuleBase)

{

 PIMAGE_DOS_HEADER pDosHeader = (PIMAGE_DOS_HEADER)dwModuleBase;

 PIMAGE_NT_HEADERS pNTHeader = (PIMAGE_NT_HEADERS)((DWORD)pDosHeader + (DWORD)pDosHeader->e_lfanew);

 if(pDosHeader->e_magic != IMAGE_DOS_SIGNATURE) //valid PE header?

 return;

 if(pNTHeader->Signature != IMAGE_NT_SIGNATURE) //valid PE header?

 return;

 if(pNTHeader->FileHeader.SizeOfOptionalHeader)

 {

 DWORD dwProtect;

 WORD Size = pNTHeader->FileHeader.SizeOfOptionalHeader; //pointer to the optional header portion of the PE

 VirtualProtect((PVOID)dwModuleBase, Size, PAGE_EXECUTE_READWRITE, &dwProtect); //allow us to write

 RtlZeroMemory((PVOID)dwModuleBase, Size);

 //zero it out

 VirtualProtect((PVOID)dwModuleBase, Size, dwProtect, &dwProtect); //reset the permissions

 }

}

void UnprotectCvars(void)

{

 ConCommand *pVar = (ConCommand*)g_pCvar->GetCommands(); //pointer to list of commands

 ConVar *pConsistency = g_pCvar->FindVar("sv_consistency"); //pointer to sv_consistency

 ConVar *pCheats = g_pCvar->FindVar("sv_cheats"); //pointer to sv_cheats

 while(pVar) //cycle through commands

 {

 if(pVar->IsFlagSet(FCVAR_CHEAT))

 pVar->m_nFlags &= ~FCVAR_CHEAT; /flip the bit for fcvar_cheat

 if(pVar->IsFlagSet(FCVAR_REPLICATED))

 pVar->m_nFlags &= ~FCVAR_REPLICATED; //flip the bit for fcvar_replicated

 if(pVar->IsFlagSet(FCVAR_PROTECTED))

 pVar->m_nFlags &= ~FCVAR_PROTECTED; //flip the bit for fcvar_protected

 if(pVar->IsFlagSet(FCVAR_SPONLY))

 pVar->m_nFlags &= ~FCVAR_SPONLY; //flip the bit for fcvar_sponly

 pVar = (ConCommand*)pVar->GetNext();

 }

 pConsistency->SetValue(0);

 pCheats->SetValue(1);

 //allow 'cheat' commands to be run server side

}

void __stdcall Hooked_CreateMove(int sequence_number, float input_sample_frametime, bool active)

!! Called on every tick of the game

!! Essentially the entry point for our code to run

!! From here it cycles through the enabled cheats

and executes the appropriate routines

!! This is the first stop for this cheat code

!! (Un)fortunately the most recent update to TF2

broke this cheat

!! There was a class method (EyeAngles()) that was

made private in the latest update

!! The AIMBOT relied on this method to 'Aim'

!! Source code for this is too long, so a quick

overview:

!! Get list of entities (players & objects)

!! Found a player? not me? Solid? other team?

!! Get my loc and fov, get vector from me to target. Is target

in my fov?

!! Change my Eyeposition to face target's hitbox

!! There are 5 to choose from. But really, who's going to

choose one other than the head...

!! Fire!

if(gCvars.misc_speed_on && g_pCvar) //is the speed hack enabled and do we have an interface to console commands

{

 ConVar* pSpeed = g_pCvar->FindVar("host_timescale"); //pointer to CVAR host_timescale

 if(pSpeed)

 {

 if(gCvars.misc_speed > 1 && bIsSpeedKey(gCvars.misc_speed_key)) //hack enabled? button pushed?

 {

 pSpeed->SetValue(gCvars.misc_speed); //set the CVAR to the specified value

 }

 else

 {

 pSpeed->SetValue(1.0f); //set CVAR to 1

 }

 }

}

if(gCvars.misc_autopistol && pCommand->buttons & IN_ATTACK && //cheat enabled, do we have access to the required interface

 (iGetWeaponID(pBaseWeapon) == WEAPONLIST_SCOUTPISTOL || //are we holding the right weapon?

 iGetWeaponID(pBaseWeapon) == WEAPONLIST_ENGINEERPISTOL ||

 iGetWeaponID(pBaseWeapon) == WEAPONLIST_SPYPISTOL))

{

 static bool bInAttack = false; //stores whether we're attacking or not, set externally

 if (bInAttack) //if we're attacking (i.e. pushing the left mouse button)

 pCommand->buttons |= IN_ATTACK; //flip the bit that says you're firing (rapid fire)

 else

 pCommand->buttons &= ~IN_ATTACK; //else, flip it back

 bInAttack = !bInAttack; //reset our state

}

 __asm

 {

 mov ecx, pBaseWeapon; //structure containing weapon info (crit chance, etc.)

 mov eax, [ecx+0x16B4]; //grab persistent seed

 push eax; //save it

 mov eax, [ecx];

 mov eax, [eax+0x528]; //IsShotCritical

 call eax;

 mov iResult, eax; //Save value at AL - 1 for crit, 0 for sad panda

 pop eax;

 mov ecx, pBaseWeapon;

 mov [ecx+0x16B4], eax; //restore persistent seed

 }

 if(pCommand->buttons & IN_ATTACK)

 {

 pCommand->buttons &= ~IN_ATTACK; //not crit time, cry some twinkletoes

 bWaitFire = true;

 }

 if(bWaitFire && (BYTE)iResult)

 {

 pCommand->buttons |= IN_ATTACK; //crit time, attack!

 bWaitFire = false;

 }

!! Demo of Wireshark dissector for SRCDS traffic

!! http://www.shmoo.com/srcds/

!! There’s a lot more here.. But it’s a start

!! Interested? Capture what you learn and share

it b/c there are others who re inventing the

wheel every day

!! www.nomoose.org

!! gdead@shmoo.com, l0l0@shmoo.com

