
Automated Malware Similarity Analysis
Daniel Raygoza

General Dynamics Advanced Information Systems

1

Friday, June 26, 2009



Disclaimers
(they seem like a good idea)

• This project and presentation are my own personal work, and they are 
not a product of (or approved by) General Dynamics (GD) or its 
customers.

• Anything I say is my own opinion, not GD’s or its customers.

2

Friday, June 26, 2009



Problem

• In-depth malware analysis is expensive

• Difficult to reduce duplicated effort as teams grow

• Anything not automated would probably counter benefits

3

Friday, June 26, 2009



Target Niche

• Teams that:

• Routinely unpack and analyze incoming samples

• Want to avoid duplicate analysis

• Looking for similarity links

4

Friday, June 26, 2009



Initial Idea

• Use IDA for auto-analysis of all samples

• Break samples into functions

• Calculate a fuzzy hash of all functions

• Calculate the similarity between all functions in the entire system

• Weight and aggregate similarity scores between a given sample and all 
other samples in the system

5

Friday, June 26, 2009



Fuzzy Hashing In A Few Seconds

• Fuzzy hashing, created by Jesse Kornblum, based on spamsum by 
Andrew Tridgell

• The output hash value is tolerant of changes in the input

• Hash values compared against each other to compute similarity

6

Friday, June 26, 2009



On Fuzzy Hashing

• Full binary fuzzy hashing of malware doesn’t perform well in many 
cases (packing, reordering of functions, partial code reuse, etc). 

• Small files tend to be heavy on structure and light on code, causes a 
lot of mismatches.

• Many issues are addressed by using fuzzy hashing at the function level 
on unpacked binaries, though it’s still not perfect.

• If we can expect similarity between any extracted byte-streams to be 
meaningful, we can apply fuzzy hashing effectively.

7

Friday, June 26, 2009



Existing Research

• Automated malware similarity analysis definitely isn’t new

• There are many published papers on malware similarity analysis using 
a variety of techniques, some of which seem highly effective

• Very few have freely available implementations

• The ideas are good, but we need to way to practically apply them

8

Friday, June 26, 2009



Non-Free Tools

• Zynamics BinDiff/VXClass

• HBGary DDNA

• Various private tools

9

Friday, June 26, 2009



Refined Idea

• Create an open source framework to support the implementation of a 
variety of similarity scoring systems

• Begin with fuzzy hashing, move on to other more complex algorithms

• Make all of the similarity data available in abstract form, allowing for 
custom visualization

10

Friday, June 26, 2009



Limitations

• Automation doesn’t include unpacking, I’m not nearly awesome 
enough to write a generic unpacker. However it should be easy 
enough to integrate your organizations own unpacker(s)

• Fuzzy hashing has obvious limitations, but the implementation of other 
algorithms should address this

• Currently relies on IDA for disassembly

• Like virtually any other implementation it can be subverted by 
malware authors

11

Friday, June 26, 2009



Limitations

• The open source framework would not be a general purpose malware 
classification or identification system (you may want to check out 
Yara)

• Not 100% automated, lacks a general purpose unpacker

12

Friday, June 26, 2009



Implementation

• Python (ingest, backend)

• MySQL

• PHP (frontend)

• Hopefully OS agnostic, but developed on Linux

13

Friday, June 26, 2009



Components

• Ingest - Uses abstracted disassembler to retrieve function blobs. Calls 
plugins to retrieve additional information to be stored with the sample 
(PE information, PEiD, strings, disassembly, decompilation, strings, etc). 
Packages data to be sent to database.

• Backend - Takes the general purpose data packaged by the Ingest 
module and applies all of the relevant similarity algorithms 
(implemented as plugins), stores similarity results in database.

• Frontend - Makes the database contents available via XML.

14

Friday, June 26, 2009



Other Ideas

• Support ingesting IDB files directly, allowing analysts to fix up the IDB 
prior to analysis

• Selectively null out operands that are likely to vary between instances 
of code, then feed this data to the similarity algorithms

15

Friday, June 26, 2009



Work To Be Done

• Implement additional similarity algorithms

• Find the bugs that certainly exist

• Create a prettier front-end

• Better documentation

• Installer

16

Friday, June 26, 2009



Some Early Results

• Stats to come...

17

Friday, June 26, 2009



Turbo Tool Demo...

• ... crossing fingers

18

Friday, June 26, 2009



Getting It

• Project homepage at http://www.raygoza.net/fuzzball/

19

Friday, June 26, 2009

http://www.raygoza.net/fuzzball/
http://www.raygoza.net/fuzzball/


Thank You

• Kevan, Mike, Joe, General Dynamics, and others.

• Smarter individuals from whom I’ve stolen/reused ideas.

20

Friday, June 26, 2009



References

• Yara: http://code.google.com/p/yara-project/

• Fuzzy Hashing – Jesse Kornblum: http://dfrws.org/2006/proceedings/12-Kornblum-pres.pdf

• Fuzzy Clarity – Digital Ninja: http://digitalninjitsu.com/downloads/Fuzzy_Clarity_rev1.pdf

• Spamsum – Andrew Tridgell: http://digitalninjitsu.com/downloads/Fuzzy_Clarity_rev1.pdf

• ssdeep – Jesse Kornblum: http://ssdeep.sourceforge.net/

21

Friday, June 26, 2009

http://code.google.com/p/yara-project/
http://code.google.com/p/yara-project/
http://dfrws.org/2006/proceedings/12-Kornblum-pres.pdf
http://dfrws.org/2006/proceedings/12-Kornblum-pres.pdf
http://digitalninjitsu.com/downloads/Fuzzy_Clarity_rev1.pdf
http://digitalninjitsu.com/downloads/Fuzzy_Clarity_rev1.pdf
http://digitalninjitsu.com/downloads/Fuzzy_Clarity_rev1.pdf
http://digitalninjitsu.com/downloads/Fuzzy_Clarity_rev1.pdf
http://ssdeep.sourceforge.net/
http://ssdeep.sourceforge.net/

