Reverse Engineering by Crayon:
Game Changing Hypervisor and
o Visualization Analysis

Fine-grained covert debugging using
hypervisors and analysis via visualization

Daniel A. Quist
Lorie M. Liebrock
Offensive Computing, LLC
New Mexico Tech

Defcon 17
Las Vegas, NV

Introduction

» Reverse Engineering is Hard!

» Hypervisor based executable
monitoring

» Modifications for improved performance
» Visualization tool for rapid analysis

» Modifying the reverse engineering
process

Difficulties of RE

e Time consuming process
» Difficult set of skills to acquire

e Tools are advanced, but still don’t
provide adequate views.

» Focused on static analysis

» Software armoring makes process
even more difficult

Process for Reverse Engineering

e Setup an Is

olated run-time

environment
o Execution and initial analysis
» Deobfuscate compressed or packed

code
e Disassemb
* ldentify anc

y / Code-level Analysis
analyze relevant and

Interesting

portions of the program

Isolated Analysis Environment

e Setup an Isolated Runtime
Environment

> Virtual machines: VMWare, Xen, KVM, ...
- Need to protect yourself from malicious code
- Create a known-good baseline environment

> Quickly allows backtracking if something bad
happens

Execution and Initial Analysis

» Goal: Quickly figure out what the
program is doing without looking at
assembly

 Look for:
- Changes to the file system

- Changes to the behavior of the system
Network traffic
Overall performance
Ads or changed browser settings

Remove Software Armoring

» Program protections to prevent
reverse engineering

» Done via packers — Small
encoder/decoder

» Self-modifying code
o Lots of research about this

- OllyBonE, Saffron, Polyunpack, Renovo,
Ether, Azure

- My research uses Ether

Packing and Encryption

» Self-modifying code

- Small decoder stub
- Decompress the main executable
- Restore imports

» Play “tricks” with the executable
- OS Loader is inherently lazy (efficient)
- Hide the imports
- Obscure relocations

- Use bogus values for various unimportant
fields

Software Armoring

- Compressed, obfuscated, hidden code
> Virtual machine detection
- Debugger detection

- Shifting decode frames

Normal PE File

Packed PE File

In Memory

I 4

o~

Troublesome Protections

* Virtual Machine Detection
- Redpill, ocvmdetect, Paul Ferrie’'s paper

» Debugger Detection
> IsDebuggerPresent()
- EFLAGS bitmask
e Timing Attacks
- Analyze value of RDTSC before and after
- Really effective

Thwarting Protections

Two methods for circumvention

1. Know about all the protections before
hand and disable them

2. Make yourself invisible

Virtual Machine Monitoring

e Soft VM Based systems
> Renovo
> Polyunpack
- Zynamics Bochs unpacker

* Problems
- Detection of virtual machines is easy

> Intel CPU never traditionally designed for
virtualization

- Do not emulate x86 bug-for-bug

OS Integrated Monitoring

» Saffron, OllyBonE

- Page-fault handler based debugger
- Abuses the supervisor bit on memory
pages
- High-level executions per page
* Problems
- Destabilizes the system
- Need dedicated hardware
> FIne-grain monitoring not possible

Fully Hardware Virtualizations

» Ether: A. Dinaburg, P. Royal
- Xen based hypervisor system
- Base functions for monitoring
System calls
Instruction traces
Memory Writes
o All interactions done by memory page mapping
* Problems
- Unpacking code primitive
- Dumps mangled and not possible to
dissassemble
> Old version of Xen hypervisor

Disassembly and Code Analysis

» Most nebulous portion of the process

» Largely depends on intuition

- Example: When we reversed the MP3
Cutter and MIRC programs

- Takes time and experience
» Looking at assembly Is tedious

» Suffers from “not seeing the forest
from the trees” syndrome

» Analyst fatigue — Level of attention
required yields few results

Find Interesting and Relevant

Portions of the Executable

» Like disassembly, this relies on a lot of
Intuition and experience

» Typical starting points:

- Look for interesting strings
> Look for API calls
o Examine the interaction with the OS

 This portion Is fundamentally
iImprecise, tedious, and often
frustrating for beginners and experts

Contributions

» Modifications to Ether
> Improve malware unpacking
- Enable advanced tracing mechanisms
- Automate much of the tedious portions

* Visualizing Execution for Reversing
and Analysis (VERA)

- Speed up disassembly and finding
Interesting portions of an executable

- Faster identification of the Original Entry
Point

Ether System Architecture

Ether Analysis System

Xen Hypervisor with Ether Extensions
Ring -1

Intel xB6 CPU wi Hardware Virtualization

Extensions to Ether

 Removed unpacking code from
hypervisor into userspace

» Better user mode analysis

» PE Repair system — Allows for
disassembly of executables

e Added enhanced monitoring system for
executables

Results

 Close to a truly covert analysis system
- Ether is nearly invisible
- Still subject to bluepill detections

» Fine-grain resolution of program
execution

» Application memory monitoring and
full analysis capabilities

 Dumps from Ether can now be loaded
In IDA Pro without modification

Open Problems

» Unpacking process produces lots of
candidate dump files

» Need to figure out what the OEP Is
» Import rebuilding is still an issue

* Now that there Is a nice tool for tracing
programs covertly, we need to do
analysis

Visualization of Trace Data

» Goals:
> Quickly visually subvert software armoring

o ldentify modules of the program
Initialization
Main loops
End of unpacking code

> Figure out where the self-modifying code
ends (OEP detection)

- Discover dynamic runtime program behavior
o Integrate with existing tools

Visualizing the OEP Problem

e Each block (vertex) represents a basic
block executed in the user mode code

» Each line represents a transition

e The thicker the line, the more it was
executed

» Colors represent areas of memory
execution

VERA

» Visualization of Executables for
Reversing and Analysis

» Windows MFC Application
e Integrates with IDA Pro

 Fast, small memory footprint

VERA Architecture

Ether Analysis System

Instrumented Windows
XP VM

Xen Hypervisor with Ether Extensions
Ring -1

Intel x86 CPU wi Hardware Yirtualization

Visualizing Packers

 Memory regions marked for PE
heuristics

T

Netbull Virus (Not Packed)

Netbull Zoomed View

Visualizing Packers

 Memory regions marked for PE
heuristics

UPX - OEP

0x0040bb12

0x0040bb0d
Nx0040bb0b

0x0040bb03

|En|an{ey

Future Work

» General GUI / bug fixes

e Integration with IDA Pro

 Memory access visualization

» System call integration

» Function boundaries

o Interactivity with unpacking process

» Modify hypervisor to work with
WInDBG, OllyDbg, IDA Debugger

Conclusions

* Visualizations make it easy to identify
the OEP

» No statistical analysis of data needed
» Program phases readily identified
e Graphs are relatively simple

 Preliminary user study shows tool
holds promise for speeding up reverse
engineering

Questions?

These slides are out of date! Find the latest ones at:

