
Reverse Engineering by Crayon: Reverse Engineering by Crayon: 
Game Changing Hypervisor andGame Changing Hypervisor andGame Changing Hypervisor and Game Changing Hypervisor and 
Visualization AnalysisVisualization Analysis

Fine-grained covert debugging using 
hypervisors and analysis via visualization

Daniel A. Quist
Lorie M. Liebrock

Offensive Computing, LLC
New Mexico Tech

Defcon 17
Las Vegas, NV



IntroductionIntroductionIntroductionIntroduction
Reverse Engineering is Hard!g g
Hypervisor based executable 
monitoringmonitoring
Modifications for improved performance
Visualization tool for rapid analysisVisualization tool for rapid analysis
Modifying the reverse engineering 
process



Difficulties of REDifficulties of REDifficulties of REDifficulties of RE
Time consuming processg p
Difficult set of skills to acquire
Tools are advanced but still don’tTools are advanced, but still don t 
provide adequate views.
Focused on static analysisFocused on static analysis
Software armoring makes process 

diffi lteven more difficult



Process for Reverse EngineeringProcess for Reverse EngineeringProcess for Reverse EngineeringProcess for Reverse Engineering

Setup an isolated run-time p
environment
Execution and initial analysisExecution and initial analysis
Deobfuscate compressed or packed 
codecode
Disassembly / Code-level Analysis
Id tif d l l t dIdentify and analyze relevant and 
interesting portions of the program



Isolated Analysis EnvironmentIsolated Analysis EnvironmentIsolated Analysis EnvironmentIsolated Analysis Environment
Setup an Isolated Runtime p
Environment

◦ Virtual machines: VMWare, Xen, KVM, …

f f◦ Need to protect yourself from malicious code

◦ Create a known-good baseline environmentCreate a known good baseline environment

◦ Quickly allows backtracking if something bad 
happens



Execution and Initial AnalysisExecution and Initial AnalysisExecution and Initial AnalysisExecution and Initial Analysis
Goal: Quickly figure out what the 
program is doing without looking at 
assembly

Look for:
Ch t th fil t◦ Changes to the file system
◦ Changes to the behavior of the system

Network trafficNetwork traffic
Overall performance
Ads or changed browser settingsg g



Remove Software ArmoringRemove Software ArmoringRemove Software ArmoringRemove Software Armoring
Program protections to prevent g p p
reverse engineering
Done via packers – SmallDone via packers Small 
encoder/decoder
Self-modifying codeSelf modifying code
Lots of research about this

OllyBonE Saffron Polyunpack Renovo◦ OllyBonE, Saffron, Polyunpack, Renovo, 
Ether, Azure
◦ My research uses Ether◦ My research uses Ether



Packing and EncryptionPacking and EncryptionPacking and EncryptionPacking and Encryption
Self-modifying code
◦ Small decoder stub
◦ Decompress the main executable
◦ Restore imports
Play “tricks” with the executable
◦ OS Loader is inherently lazy (efficient)
◦ Hide the imports

Ob l ti◦ Obscure relocations
◦ Use bogus values for various unimportant 

fieldsfields



Software ArmoringSoftware ArmoringSoftware ArmoringSoftware Armoring

◦ Compressed, obfuscated, hidden code

◦ Virtual machine detection

◦ Debugger detection

◦ Shifting decode frames



Normal PE FileNormal PE FileNormal PE FileNormal PE File



Packed PE FilePacked PE FilePacked PE FilePacked PE File



Troublesome ProtectionsTroublesome ProtectionsTroublesome ProtectionsTroublesome Protections
Virtual Machine Detection
◦ Redpill, ocvmdetect, Paul Ferrie’s paper
Debugger DetectionDebugger Detection
◦ IsDebuggerPresent()
◦ EFLAGS bitmaskEFLAGS bitmask
Timing Attacks
◦ Analyze value of RDTSC before and after◦ Analyze value of RDTSC before and after
◦ Really effective



Thwarting ProtectionsThwarting ProtectionsThwarting ProtectionsThwarting Protections
Two methods for circumvention

1. Know about all the protections before p
hand and disable them

2. Make yourself invisible



Virtual Machine MonitoringVirtual Machine MonitoringVirtual Machine MonitoringVirtual Machine Monitoring
Soft VM Based systems
◦ Renovo
◦ Polyunpack
◦ Zynamics Bochs unpacker

ProblemsProblems
◦ Detection of virtual machines is easy
◦ Intel CPU never traditionally designed for◦ Intel CPU never traditionally designed for 

virtualization
◦ Do not emulate x86 bug-for-bugDo not emulate x86 bug for bug



OS Integrated MonitoringOS Integrated MonitoringOS Integrated MonitoringOS Integrated Monitoring
Saffron, OllyBonEy
◦ Page-fault handler based debugger
◦ Abuses the supervisor bit on memory p y

pages
◦ High-level executions per page
Problems
◦ Destabilizes the systemDestabilizes the system
◦ Need dedicated hardware
◦ Fine-grain monitoring not possibleFine grain monitoring not possible



Fully Hardware VirtualizationsFully Hardware VirtualizationsFully Hardware VirtualizationsFully Hardware Virtualizations
Ether: A. Dinaburg, P. Royal
◦ Xen based hypervisor system
◦ Base functions for monitoring

S t llSystem calls
Instruction traces
Memory WritesMemory Writes

◦ All interactions done by memory page mapping
Problems
◦ Unpacking code primitive
◦ Dumps mangled and not possible to 

dissassemble
◦ Old version of Xen hypervisor



Disassembly and Code AnalysisDisassembly and Code AnalysisDisassembly and Code AnalysisDisassembly and Code Analysis
Most nebulous portion of the process
Largely depends on intuition
◦ Example: When we reversed the MP3 

Cutter and MIRC programs
◦ Takes time and experience
L ki t bl i t diLooking at assembly is tedious
Suffers from “not seeing the forest 
f th t ” dfrom the trees” syndrome
Analyst fatigue – Level of attention 
required yields few resultsrequired yields few results



Find Interesting and Relevant Find Interesting and Relevant 
P i f h E blP i f h E blPortions of the ExecutablePortions of the Executable

Like disassembly, this relies on a lot of y
intuition and experience
Typical starting points:Typical starting points:
◦ Look for interesting strings
◦ Look for API callsLook for API calls
◦ Examine the interaction with the OS
This portion is fundamentallyThis portion is fundamentally 
imprecise, tedious, and often 
frustrating for beginners and expertsfrustrating for beginners and experts



ContributionsContributionsContributionsContributions
Modifications to Ether
◦ Improve malware unpacking
◦ Enable advanced tracing mechanisms
◦ Automate much of the tedious portions
Visualizing Execution for Reversing 

d A l i (VERA)and Analysis (VERA)
◦ Speed up disassembly and finding 

interesting portions of an executableinteresting portions of an executable
◦ Faster identification of the Original Entry 

Pointo t



Ether System ArchitectureEther System ArchitectureEther System ArchitectureEther System Architecture



Extensions to EtherExtensions to EtherExtensions to EtherExtensions to Ether
Removed unpacking code from 
h i ihypervisor into userspace

B d l iBetter user mode analysis

PE R i t All fPE Repair system – Allows for 
disassembly of executables

Added enhanced monitoring system for 
executablesexecutables



ResultsResultsResultsResults
Close to a truly covert analysis systemy y y
◦ Ether is nearly invisible
◦ Still subject to bluepill detectionsj p
Fine-grain resolution of program 
executionexecution
Application memory monitoring and 
full analysis capabilitiesfull analysis capabilities
Dumps from Ether can now be loaded 
in IDA Pro without modificationin IDA Pro without modification



Open ProblemsOpen ProblemsOpen ProblemsOpen Problems
Unpacking process produces lots of 
candidate dump files

f ONeed to figure out what the OEP is

I t b ildi i till iImport rebuilding is still an issue

N th t th i i t l f t iNow that there is a nice tool for tracing 
programs covertly, we need to do 
analysisanalysis



Visualization of Trace DataVisualization of Trace DataVisualization of Trace DataVisualization of Trace Data
Goals:
◦ Quickly visually subvert software armoring
◦ Identify modules of the program

Initialization
Main loops
End of unpacking codeEnd of unpacking code

◦ Figure out where the self-modifying code 
ends (OEP detection)e ds (O detect o )
◦ Discover dynamic runtime program behavior
◦ Integrate with existing toolsg g



Visualizing the OEP ProblemVisualizing the OEP ProblemVisualizing the OEP ProblemVisualizing the OEP Problem
Each block (vertex) represents a basic 
block executed in the user mode code

Each line represents a transition

Th thi k th li th itThe thicker the line, the more it was 
executed

Colors represent areas of memory 
executionexecution



VERAVERAVERAVERA
Visualization of Executables for 
Reversing and Analysis

Windows MFC Application

Integrates with IDA Pro

Fast, small memory footprint



VERA ArchitectureVERA ArchitectureVERA ArchitectureVERA Architecture



Visualizing PackersVisualizing PackersVisualizing PackersVisualizing Packers
Memory regions marked for PE y g
heuristics



Demo!Demo!Demo!Demo!



NetbullNetbull Virus (Not Packed)Virus (Not Packed)NetbullNetbull Virus (Not Packed)Virus (Not Packed)



NetbullNetbull Zoomed ViewZoomed ViewNetbullNetbull Zoomed ViewZoomed View



Visualizing PackersVisualizing PackersVisualizing PackersVisualizing Packers
Memory regions marked for PE y g
heuristics



UPXUPXUPXUPX



UPXUPX -- OEPOEPUPX UPX OEPOEP



ASPackASPackASPackASPack



FSGFSGFSGFSG



MEWMEWMEWMEW



TeLockTeLockTeLockTeLock



Future WorkFuture WorkFuture WorkFuture Work
General GUI / bug fixesg
Integration with IDA Pro
Memory access visualizationMemory access visualization
System call integration
F ti b d iFunction boundaries
Interactivity with unpacking process
Modify hypervisor to work with 
WinDBG, OllyDbg, IDA Debugger



ConclusionsConclusionsConclusionsConclusions
Visualizations make it easy to identify y y
the OEP
No statistical analysis of data neededNo statistical analysis of data needed
Program phases readily identified
Graphs are relatively simpleGraphs are relatively simple
Preliminary user study shows tool 
h ld i f diholds promise for speeding up reverse 
engineering



Questions?Questions?Questions?Questions?

These slides are out of date! Find the latest ones at:These slides are out of date! Find the latest ones at:

http://www.offensivecomputing.net/


