Attacking Tor at the Application Layer

Gregory Fleischer (gfleischer@gmail.com)

DRAFT SLIDES

Updated slides will be provided after the talk.

Most importantly, the updates will include links to permanent location for all online demos.

- What this talk is about
 - identifying Tor web traffic
 - fingerprinting users
 - attacking at the application layers
- There is a heavy emphasis on the clientside, web browsers attacks and JavaScript

- What this talk is NOT about
 - passive monitoring at exit nodes
 - network attacks against path selection
 - using application functionality to increase the likelihood of network attacks
 - breaking SSL

- Software tested
 - The Tor Browser Bundle
 - Vidalia Bundle for Windows
 - Vidalia Bundle for Mac OS X
 - Firefox 2, Firefox 3.0 and Firefox 3.5 RC
 - Torbutton

- Brief overview of Tor
 - free software developed by The Tor Project
 - uses onion routing and encryption to provide network anonymity
 - can be used to circumvent local ISP surveillance and network blocking
 - can also be used to hide originating IP address from remote servers

- Adversary model at the application layer
 - normal browsing, without Tor
 - local ISP
 - remote server

- Adversary model when using Tor
 - remote server
 - exit nodes
 - remote server's ISP
 - exit node's ISP

- Exit nodes as attack points
 - can inject arbitrary content into nonencrypted responses
 - but can also modify or replace nonencrypted requests
 - Tor users make attractive targets because they are self-selecting

- Applications and Tor
 - only applications that are proxy aware can use Tor properly
 - network clients that don't know about Tor may leak the user's original IP address
 - user's IP address may also leak for applications that don't use proxy for name lookups

- DNS requests over Tor
 - DNS queries are resolved by remote Tor node
 - resolution can be slow, so queries are cached locally for a minimum of 60 seconds regardless of TTL
 - makes traditional DNS rebinding attacks difficult

- Application stack for Tor web surfing
 - web browser (most likely Firefox)
 - local HTTP proxy (Privoxy or Polipo)
 - Tor client as SOCKS proxy
 - remote web server

- Remote sites can easily detect Tor users' web traffic as a group
 - the list of Tor exit nodes is well known
 - for example, TorBulkExitList can be used to retrieve a list of all exit nodes
 - there are some alternative methods

- Examine IP based on cached-descriptors
 - run a Tor client and track IP addresses
 - simple, passive
 - may be limited, not all exit IP addresses are published

- TorDNSEL
 - DNS based look-up of exit node/port combination
 - uses active testing of exit nodes to determine actual exit IP addresses
 - used by https://check.torproject.org/

- Request Tor specific HTML content
 - HTML request via: iframe, image, link, JavaScript, etc.
 - use hidden service (.onion)
 - use exit node syntax (.exit)

- Problems with requesting Tor specific content
 - depends on resources outside of your control
 - there is an associated infrastructure cost
 - slow, may not always work
 - other options?

- Use .noconnect syntax
 - internal Tor host name suffix that immediately closes connection
 - compare timing of resolving "example.example" and "example.noconnect"
 - can be performed in client-side script

- Browser fingerprinting using active testing
- Firefox and Torbutton
 - recommended by The Tor Project along with Torbutton
 - Torbutton hides user agent through setting modifications
 - Torbutton also disables plugins by default
- Other browsers not tested

- Anonymity set reductions through Firefox
- Firefox browser behavior changes
 - examine functionality differences between versions and platforms
 - iterate Components.interfaces
 - can "unmask" real user-agent information

- Look for installed/enabled Firefox add-ons
 - add-on content may remotely loadable if "contentaccessible=yes"
 - add-on may contain XPCOM components which are enumerable via Components.interfacesByID

- Generate and examine browser errors
 - some exception messages are localized and could be used to determine language
 - internal exceptions may leak system information
 - example, get local browser install location:
 - (new BrowserFeedWriter()).close()

- Enumerate Windows COM objects
 - Firefox exposes GeckoActiveXObject
 - can be used to load ActiveX objects
 - only whitelisted components are allowed
 - but different errors are generated based on whether the ProgID is located

- More anonymity set reductions through local proxies
 - Vidalia Bundle uses Privoxy as proxy
 - Tor Browser Bundle uses Polipo
 - examine proxy behaviors and content

- Local proxies may export specific content
 - RSnake demonstrated detecting Privoxy using Privoxy specific CSS
 - http://ha.ckers.org/weird/privoxy-test.html
 - circa 2006, but still works

- Local proxies may exhibit detectable behavior
 - Polipo filters a specific set of headers: "from", "accept-language", "x-pad", "link"
 - can construct XMLHttpRequest requests that contain these headers and test for the filtering

- Exploit application interactions and defects
 - generate proxy errors using XMLHttpRequest
 - responses may include proxy version, hostname, local time and timezone
 - need to maintain same-origin to read response

- Use browser defects and edge cases
 - generate POST request without length
 - IPv6 host name: http://[example.com]/
 - malformed authority: http://x:@example.com/
 - requests with bogus HTTP methods: "* / HTTP/I.0"

- Cause protocol errors from the server
 - serve valid content, but drop CONNECT requests
 - return nonsensical or invalid HTTP headers
 - anything in RFC 2616 that is specified as "MUST" is probably fair game

- Historical attacks of note
 - Practical Onion Hacking FortConsult
 - HD Moore's Torment & decloak.net
 - ControlPort exploitation

- ControlPort exploitation Summer 2007
 - abused cross-protocol request to Tor ControlPort (localhost:9051)
 - Tor allowed multiple attempts to send AUTHENTICATE directive
 - attack via web page form POST with encoding of 'multipart/form-data'
 - fixed by only allowing a single attempt

- What else was big in Summer 2007?
- DNS rebinding:
 - Java applets could use 'document.domain' bypass to open raw TCP sockets
 - only protection was to set ControlPort password

- Torbutton protections against scripts
 - restricts dangerous protocols (e.g., "resource://", "chrome://", "file://")
 - masks some identifying properties
 - some of these are implemented JavaScript
 - but what's done in JavaScript can be undone in JavaScript

- Defeating Torbutton protections
 - use the "delete" operator or prototypes to access original objects -- mostly fixed
 - use XPCNativeWrapper to get reference to protected, original methods
 - use Components.lookupMethod to retrieve internally wrapped native method

- Abusing active content and plugins
 - active content and plugins are dangerous
 - some people want to (or need to) use them
 - can sometimes force load of plugin content by directly including it:
 - <iframe src="http://example.com/attack.swf">

- Example of Firefox 2 exploit
 - Torbutton behaves differently if it is set to Disabled when the browser is launched
 - by using nested protocol handlers, the content is loaded before Torbutton can block it
 - jar:view-source:http://example.com/x.jar!/attack.html
 - x.jar contains attack.html and attack.swf
 - attack.html loads attack.swf via iframe

- Multiple browser attacks
 - The Tor Project suggests using two browsers; one for Tor, one for unsafe
 - the unsafe browser probably doesn't have many of the restrictions or protections
 - content from the unsafe browser can potentially target local Tor resources
 - for example, use Java same origin bypass

- External protocol handlers can launch applications that aren't proxy aware
 - Windows telnet: protocol handler
 - Windows Idap: protocol handler
 - these may be automatically invoked unless the "Always ask" option is set

- Add-ons may launch external programs
 - Microsoft .NET Framework Assistant
 - installed as system extension to support ClickOnce deployment
 - monitored for content that was returned with Content-Type: application/x-ms-application
 - re-requests content from external program, leaking the user's original IP address

- Attacking saved content downloaded via Tor
 - any unencrypted content is vulnerable
 - any content downloaded over HTTP can be modified to be malicious
 - trojan content may wait to phone home
 - even "safe" content may not be so safe

- Locally saved HTML content is not safe
 - any HTML content can be forced to be locally saved by specifying "Content-disposition: attachment"
 - may be saved with an HTML extension and opened later from the web browser
 - the "Open" option opens a local temporary file
 - in Firefox 2, local HTML can read any file

- Vidalia bundles with Vidalia version 0.0.16
 - the ControlPort password was saved in clear text (even for random values)
 - locally saved HTML files could read this
 - if Java was enabled, same origin bypass could be used to authenticate to ControlPort using the password

- Additional blended threats are possible
 - if plugin content is allowed, a locally saved file may be able to bypass restrictions
 - remote attacker sites can opt-in to allow plugin content to connect back (e.g., crossdomain.xml)
 - local HTML could use jar: protocol to load additional active content

- New "Toggle" attacks against Torbutton
 - attempt to transition state information when user toggles Torbutton
 - use JavaScript setInterval as a timer
 - remotely detecting Torbutton banned ports
 - use returnValue from showModalDialog to transfer content between windows

- There is a large application attack surface
 - there are many attackable components between the user web browser, local HTTP proxy, Tor client and remote web server
 - new attack techniques are researched and refined all the time
 - many common web application attacks can be repurposed to attack Tor users

- Consider using an isolated environment
 - run web browser and Tor inside a VM
 - only install the software you need
 - create a restrictive egress firewall
 - only exit traffic that goes over Tor

- Remember safe web browsing habits
 - consider using isolated identities, and don't mix and match user accounts
 - don't trust content that was downloaded over unencrypted channels

References:

- https://www.torproject.org/
- https://git.torproject.org/checkout/tor/master/doc/spec/address-spec.txt
- https://www.torproject.org/torbutton/design/
- http://exitlist.torproject.org/
- http://www.ietf.org/rfc/rfc2616.txt
- http://releases.mozilla.org/
- https://developer.mozilla.org/En/DOM/Window.showModalDialog
- https://developer.mozilla.org/En/Windows Media in Netscape
- https://bugzilla.mozilla.org/show_bug.cgi?id=412945
- http://ha.ckers.org/blog/20061220/detecting-privoxy-part-ii/
- http://www.fortconsult.net/images/pdf/Practical_Onion_Hacking.pdf
- http://archives.seul.org/or/talk/Mar-2007/msg00131.html
- http://decloak.net/

End