
Attacking Tor at the
Application Layer

Gregory Fleischer (gfleischer@gmail.com)

DRAFT SLIDES

Updated slides will be provided after the talk.

Most importantly, the updates will include links to
permanent location for all online demos.

mailto:gfleischer@gmail.com
mailto:gfleischer@gmail.com

Introduction

Introduction

• What this talk is about

• identifying Tor web traffic

• fingerprinting users

• attacking at the application layers

• There is a heavy emphasis on the client-
side, web browsers attacks and JavaScript

Introduction

• What this talk is NOT about

• passive monitoring at exit nodes

• network attacks against path selection

• using application functionality to increase
the likelihood of network attacks

• breaking SSL

Introduction

• Software tested

• The Tor Browser Bundle

• Vidalia Bundle for Windows

• Vidalia Bundle for Mac OS X

• Firefox 2, Firefox 3.0 and Firefox 3.5 RC

• Torbutton

Background

Background

• Brief overview of Tor

• free software developed by The Tor Project

• uses onion routing and encryption to
provide network anonymity

• can be used to circumvent local ISP
surveillance and network blocking

• can also be used to hide originating IP
address from remote servers

Background

• Adversary model at the application layer

• normal browsing, without Tor

• local ISP

• remote server

Background

• Adversary model when using Tor

• remote server

• exit nodes

• remote server’s ISP

• exit node’s ISP

Background

• Exit nodes as attack points

• can inject arbitrary content into non-
encrypted responses

• but can also modify or replace non-
encrypted requests

• Tor users make attractive targets because
they are self-selecting

Background

• Applications and Tor

• only applications that are proxy aware can
use Tor properly

• network clients that don’t know about Tor
may leak the user’s original IP address

• user’s IP address may also leak for
applications that don’t use proxy for name
lookups

Background

• DNS requests over Tor

• DNS queries are resolved by remote Tor
node

• resolution can be slow, so queries are
cached locally for a minimum of 60
seconds regardless of TTL

• makes traditional DNS rebinding attacks
difficult

Background

• Application stack for Tor web surfing

• web browser (most likely Firefox)

• local HTTP proxy (Privoxy or Polipo)

• Tor client as SOCKS proxy

• remote web server

Identifying

Identifying

• Remote sites can easily detect Tor users’
web traffic as a group

• the list of Tor exit nodes is well known

• for example, TorBulkExitList can be used
to retrieve a list of all exit nodes

• there are some alternative methods

Identifying

• Examine IP based on cached-descriptors

• run a Tor client and track IP addresses

• simple, passive

• may be limited, not all exit IP addresses
are published

Identifying

• TorDNSEL

• DNS based look-up of exit node/port
combination

• uses active testing of exit nodes to
determine actual exit IP addresses

• used by https://check.torproject.org/

http://check.torproject.org
http://check.torproject.org

Identifying

• Request Tor specific HTML content

• HTML request via: iframe, image, link,
JavaScript, etc.

• use hidden service (.onion)

• use exit node syntax (.exit)

Identifying

• Problems with requesting Tor specific
content

• depends on resources outside of your
control

• there is an associated infrastructure cost

• slow, may not always work

• other options?

Identifying

• Use .noconnect syntax

• internal Tor host name suffix that
immediately closes connection

• compare timing of resolving
“example.example” and
“example.noconnect”

• can be performed in client-side script

Fingerprinting

Fingerprinting
• Browser fingerprinting using active testing

• Firefox and Torbutton

• recommended by The Tor Project along with
Torbutton

• Torbutton hides user agent through setting
modifications

• Torbutton also disables plugins by default

• Other browsers not tested

Fingerprinting

• Anonymity set reductions through Firefox

• Firefox browser behavior changes

• examine functionality differences
between versions and platforms

• iterate Components.interfaces

• can “unmask” real user-agent information

Fingerprinting

• Look for installed/enabled Firefox add-ons

• add-on content may remotely loadable if
“contentaccessible=yes”

• add-on may contain XPCOM
components which are enumerable via
Components.interfacesByID

Fingerprinting

• Generate and examine browser errors

• some exception messages are localized
and could be used to determine language

• internal exceptions may leak system
information

• example, get local browser install location:

• (new BrowserFeedWriter()).close()

Fingerprinting

• Enumerate Windows COM objects

• Firefox exposes GeckoActiveXObject

• can be used to load ActiveX objects

• only whitelisted components are allowed

• but different errors are generated based
on whether the ProgID is located

Fingerprinting

• More anonymity set reductions through
local proxies

• Vidalia Bundle - uses Privoxy as proxy

• Tor Browser Bundle - uses Polipo

• examine proxy behaviors and content

Fingerprinting

• Local proxies may export specific content

• RSnake demonstrated detecting Privoxy
using Privoxy specific CSS

• http://ha.ckers.org/weird/privoxy-test.html

• circa 2006, but still works

http://ha.ckers.org/weird/privoxy-test.html
http://ha.ckers.org/weird/privoxy-test.html

Fingerprinting

• Local proxies may exhibit detectable
behavior

• Polipo filters a specific set of headers:
“from”, “accept-language”, “x-pad”, “link”

• can construct XMLHttpRequest requests
that contain these headers and test for
the filtering

Fingerprinting

• Exploit application interactions and defects

• generate proxy errors using
XMLHttpRequest

• responses may include proxy version,
hostname, local time and timezone

• need to maintain same-origin to read
response

Fingerprinting

• Use browser defects and edge cases

• generate POST request without length

• IPv6 host name: http://[example.com]/

• malformed authority: http://x:@example.com/

• requests with bogus HTTP methods: “* / HTTP/1.0”

http://x:@example.com
http://x:@example.com

Fingerprinting

• Cause protocol errors from the server

• serve valid content, but drop CONNECT
requests

• return nonsensical or invalid HTTP
headers

• anything in RFC 2616 that is specified as
“MUST” is probably fair game

Attacking

Attacking

• Historical attacks of note

• Practical Onion Hacking - FortConsult

• HD Moore’s Torment & decloak.net

• ControlPort exploitation

Attacking

• ControlPort exploitation - Summer 2007

• abused cross-protocol request to Tor
ControlPort (localhost:9051)

• Tor allowed multiple attempts to send
AUTHENTICATE directive

• attack via web page form POST with
encoding of ‘multipart/form-data’

• fixed by only allowing a single attempt

Attacking

• What else was big in Summer 2007?

• DNS rebinding:

• Java applets could use ‘document.domain’
bypass to open raw TCP sockets

• only protection was to set ControlPort
password

Attacking

• Torbutton protections against scripts

• restricts dangerous protocols (e.g.,
“resource://”, “chrome://”, “file://”)

• masks some identifying properties

• some of these are implemented JavaScript

• but what’s done in JavaScript can be
undone in JavaScript

Attacking

• Defeating Torbutton protections

• use the “delete” operator or prototypes
to access original objects -- mostly fixed

• use XPCNativeWrapper to get reference
to protected, original methods

• use Components.lookupMethod to
retrieve internally wrapped native method

Attacking

• Abusing active content and plugins

• active content and plugins are dangerous

• some people want to (or need to) use them

• can sometimes force load of plugin content
by directly including it:

• <iframe src=“http://example.com/attack.swf”>

http://example.com/attack.swf
http://example.com/attack.swf

Attacking

• Example of Firefox 2 exploit

• Torbutton behaves differently if it is set to
Disabled when the browser is launched

• by using nested protocol handlers, the content
is loaded before Torbutton can block it

• jar:view-source:http://example.com/x.jar!/attack.html

• x.jar contains attack.html and attack.swf

• attack.html loads attack.swf via iframe

http://example.com/attack.swf
http://example.com/attack.swf

Attacking

• Multiple browser attacks

• The Tor Project suggests using two
browsers; one for Tor, one for unsafe

• the unsafe browser probably doesn’t have
many of the restrictions or protections

• content from the unsafe browser can
potentially target local Tor resources

• for example, use Java same origin bypass

Attacking

• External protocol handlers can launch
applications that aren’t proxy aware

• Windows telnet: protocol handler

• Windows ldap: protocol handler

• these may be automatically invoked
unless the “Always ask” option is set

Attacking

• Add-ons may launch external programs

• Microsoft .NET Framework Assistant

• installed as system extension to support
ClickOnce deployment

• monitored for content that was returned with
Content-Type: application/x-ms-application

• re-requests content from external program,
leaking the user’s original IP address

Attacking

• Attacking saved content downloaded via Tor

• any unencrypted content is vulnerable

• any content downloaded over HTTP can
be modified to be malicious

• trojan content may wait to phone home

• even “safe” content may not be so safe

Attacking

• Locally saved HTML content is not safe

• any HTML content can be forced to be locally
saved by specifying “Content-disposition:
attachment”

• may be saved with an HTML extension and
opened later from the web browser

• the “Open” option opens a local temporary file

• in Firefox 2, local HTML can read any file

Attacking

• Vidalia bundles with Vidalia version 0.0.16

• the ControlPort password was saved in
clear text (even for random values)

• locally saved HTML files could read this

• if Java was enabled, same origin bypass
could be used to authenticate to
ControlPort using the password

Attacking

• Additional blended threats are possible

• if plugin content is allowed, a locally saved
file may be able to bypass restrictions

• remote attacker sites can opt-in to allow
plugin content to connect back (e.g.,
crossdomain.xml)

• local HTML could use jar: protocol to load
additional active content

Attacking

• New “Toggle” attacks against Torbutton

• attempt to transition state information
when user toggles Torbutton

• use JavaScript setInterval as a timer

• remotely detecting Torbutton banned ports

• use returnValue from showModalDialog to
transfer content between windows

Conclusions

Conclusions

• There is a large application attack surface

• there are many attackable components
between the user web browser, local HTTP
proxy, Tor client and remote web server

• new attack techniques are researched and
refined all the time

• many common web application attacks can
be repurposed to attack Tor users

Conclusions

• Consider using an isolated environment

• run web browser and Tor inside a VM

• only install the software you need

• create a restrictive egress firewall

• only exit traffic that goes over Tor

Conclusions

• Remember safe web browsing habits

• consider using isolated identities, and
don’t mix and match user accounts

• don’t trust content that was downloaded
over unencrypted channels

Conclusions
• References:

• https://www.torproject.org/

• https://git.torproject.org/checkout/tor/master/doc/spec/address-spec.txt

• https://www.torproject.org/torbutton/design/

• http://exitlist.torproject.org/

• http://www.ietf.org/rfc/rfc2616.txt

• http://releases.mozilla.org/

• https://developer.mozilla.org/En/DOM/Window.showModalDialog

• https://developer.mozilla.org/En/Windows_Media_in_Netscape

• https://bugzilla.mozilla.org/show_bug.cgi?id=412945

• http://ha.ckers.org/blog/20061220/detecting-privoxy-part-ii/

• http://www.fortconsult.net/images/pdf/Practical_Onion_Hacking.pdf

• http://archives.seul.org/or/talk/Mar-2007/msg00131.html

• http://decloak.net/

https://www.torproject.org
https://www.torproject.org
https://git.torproject.org/checkout/tor/master/doc/spec/address-spec.txt
https://git.torproject.org/checkout/tor/master/doc/spec/address-spec.txt
https://www.torproject.org/torbutton/design/
https://www.torproject.org/torbutton/design/
http://exitlist.torproject.org
http://exitlist.torproject.org
http://www.ietf.org/rfc/rfc2616.txt
http://www.ietf.org/rfc/rfc2616.txt
http://releases.mozilla.org
http://releases.mozilla.org
https://developer.mozilla.org/En/DOM/Window.showModalDialog
https://developer.mozilla.org/En/DOM/Window.showModalDialog
https://developer.mozilla.org/En/DOM/Window.showModalDialog
https://developer.mozilla.org/En/DOM/Window.showModalDialog
https://developer.mozilla.org/En/DOM/Window.showModalDialog
https://developer.mozilla.org/En/DOM/Window.showModalDialog
http://ha.ckers.org/blog/20061220/detecting-privoxy-part-ii/
http://ha.ckers.org/blog/20061220/detecting-privoxy-part-ii/
http://www.fortconsult.net/images/pdf/Practical_Onion_Hacking.pdf
http://www.fortconsult.net/images/pdf/Practical_Onion_Hacking.pdf
http://archives.seul.org/or/talk/Mar-2007/msg00131.html
http://archives.seul.org/or/talk/Mar-2007/msg00131.html
http://decloak.net
http://decloak.net

End

