
Hydra

• Advanced x86 polymorphic engine

• Incorporates existing techniques and introduces new ones in
one package

• All but one feature OS-independent

Random register operations

• Different synonymous instructions per invocation.

• Hydra provides a large library of such instructions and a
platform to add more.

• For some operations, the key used is randomly generated to
further obfuscate the payload.

Two ways to clear a register

Method 1:

mov reg, <key>
sub reg, <key>

Method 2:

push dword <key>
pop reg
sub reg, <key>

Recursive NOP generator

• Traditional shellcode engines use static array of possible NOPs
to generate NOP sleds – not very random!

• Hydra uses a built-in “NOP generator” that dynamically builds
a library of possible NOP instructions.

• Find all 1-byte NOP by brute-force. Brute-force two-byte NOPs
where 2nd byte is another NOP. Repeat. Larger NOP
instructions recursively contain smaller NOPs – irrelevant
where control flow lands.

• More than 1.9M NOP instructions found!

Recursive NOP generator

• The NOP instructions can also be used in between the
decoder instructions; adds variability to size and content of
the decoder

• Two types of NOPs– normal NOPs and “state-safe” NOPs

• State-safe NOP library does not contain instructions which
modify the environment (stack, registers, flow control)

• Only these have to be used in between instructions, else state
is destroyed!

Multi-Layer Ciphering

• Hydra uses randomly select ciphers on the payload.

• Random cipher operations: ror, rol, xor, add, sub, etc…

• Cipher order is random each time. No signature!

• Random 32-bit keys chosen for each operation.

• Six rounds of ciphering by default – can specify arbitrary any
rounds.

ASCII Encoder

• Need to send ASCII payload to text based protocols (HTTP) to
evade anomaly sensors.

• Hydra picks ASCII NOPs from the NOP-generator to construct
the NOP section. Choice of more than 4000 instructions.

• The ASCII NOPs are also inserted in between decoder
instructions and shellcode to further obfuscate both content
and size.

• Modular nature of the engine allows the ASCII encoding to
combine with any/all of the other options.

Bi-partite Decoding

• Signatures for payloads = Pwned!

• But most IDS systems can look for a “decoder”. Cipher loop:
xor, ror, shr, shl, etc. Static decoders = fail.

• Hydra uses dynamically generated non-contiguous decoders!
Different instructions each time, different keys, different
positions.

• Currently bi-partite decoding: decoders wrap around payload.
Ultimate goal: tighter integration within payload.

Spectrum Shaping

• Signatures fail so bust out the math.

• The frequency of bytes which correspond to x86 instructions
should look different from those of normal traffic, right?

• Wrong! Hydra does alphanumeric encoding – No binary!

• Hydra pads your shellcode with bytes to make it look
statistically similar to normal traffic.

• Just give it sample files, it does the training automatically.

Spectrum Shaping

• Hydra learns a 1-byte distribution for the target, then uses
Monte Carlos simulation to make your shellcode mimic this
distribution.

• Padding at the end is too simple; Hydra automatically spaces
out your shellcode instructions inserts the blending bytes in
between these instructions.

• Spacing is adjustable.

• Higher-byte mimicry also possible, under development.

Randomized Address Zone

• Sequence of repeated target addresses.

• Overwrites %esp on stack to point to payload.

• Simple IDS signature: NOPs and repeated numbers = sled +
return zone.

• Break signatures by adding random offsets to each address in
the return zone. Aim for the middle of the NOP sled.

Forking Shellcode

• Successful exploit = target process hangs! NOT GOOD

• Solution: fork()’ing shellcode. Child executes payload, parent
tries to recover the exploited process.

• Recovery is hard – correct %eip is normally lost during
overflow.

• Need to know target process address space – relative offset.

• Hydra fork()s your shellcode for you automatically!

Time-Cipher Shellcode

• So can’t use signatures, can’t use statistics, now what?

• Emulators! Build stripped down x86 emulator. Dynamically
execute ALL network traffic and look for self-decryption.

• Sounds nuts but people have done it!
– Polychronakis citation

– Kruegal dynamic disassembly

• Solution? Syscall-based ciphering! Exploit the fact that
emulators can’t handle full OS features.

Time-Cipher Shellcode

• Cipher your shellcode with special key that can only be
recovered when executing with a real OS.

• Can’t carry the key, that defeats the purpose.

• Need the key to be recoverable from the target.

• Can’t be static.

• Solution: the time() syscall! Use the most significant bytes of
result as the key: time-locked shellcode.

Time-Cipher Shellcode

• The key is used to decipher the primary cipher instructions in
the main loop body.

• If proper key isn’t recovered then main cipher loop doesn’t
execute correctly – illegal instructions. Payload remains
encrypted and undetected by the emulator.

• Cipher chaining – with time as the initialization vector.

• Can set a “shell-life” for the code: good for only a short period
of time.

Conclusion

• Hydra is a new shellcode polymorphism engine designed to
foil an array of known IDS methods.

• Why? Because understanding the problem is half the solution.

• Still under development mostly. For future updates check:

– Pratap Prahbu: pvp2105@columbia.edu

– Yingbo Song: yingbo@cs.columbia.edu

• Columbia University Intrusion Detection Systems Lab:
– http://www.cs.columbia.edu/ids

mailto:pvp2105@columbia.edu
mailto:yingbo@cs.columbia.edu
http://www.cs.columbia.edu/ids

