Hydra

Advanced x86 polymorphic engine

1corporates existing techniques and introduces new ones

feature OS-independent




Random register operations

Different synonymous instructions per invocation.

Hydra provides a large library of such instructions and a
platform to add more.

For some operations, the key used is randomly generated to
further obfuscate the payload.

Two ways to clear a register

Method 1: Method 2:
mov reg, <key> push dword <key>
sub reg, <key> pop reg

sub reg, <key>




Recursive NOP generator

Traditional shellcode engines use static array of possible NOPs
to generate NOP sleds — not very random!

Hydra uses a built-in “NOP generator” that dynamically builds
a library of possible NOP instructions.

Find all 1-byte NOP by brute-force. Brute-force two-byte NOPs
where 2" byte is another NOP. Repeat. Larger NOP
instructions recursively contain smaller NOPs — irrelevant
where control flow lands.

More than 1.9M NOP instructions found!



Recursive NOP generator

The NOP instructions can also be used in between the
decoder instructions; adds variability to size and content of
the decoder

Two types of NOPs— normal NOPs and “state-safe” NOPs

State-safe NOP library does not contain instructions which
modify the environment (stack, registers, flow control)

Only these have to be used in between instructions, else state
is destroyed!



Multi-Layer Ciphering
Hydra uses randomly select ciphers on the payload.
Random cipher operations: ror, rol, xor, add, sub, etc...
Cipher order is random each time. No signature!
Random 32-bit keys chosen for each operation.

Six rounds of ciphering by default — can specify arbitrary any
rounds.



ASCII Encoder

Need to send ASCII payload to text based protocols (HTTP) to
evade anomaly sensors.

Hydra picks ASCII NOPs from the NOP-generator to construct
the NOP section. Choice of more than 4000 instructions.

The ASCII NOPs are also inserted in between decoder
instructions and shellcode to further obfuscate both content
and size.

Modular nature of the engine allows the ASCII encoding to
combine with any/all of the other options.



Bi-partite Decoding
Signatures for payloads = Pwned!

But most IDS systems can look for a “decoder”. Cipher loop:
Xor, ror, shr, shl, etc. Static decoders = fail.

Hydra uses dynamically generated non-contiguous decoders!
Different instructions each time, different keys, different
positions.

Currently bi-partite decoding: decoders wrap around payload.
Ultimate goal: tighter integration within payload.



Spectrum Shaping

Signatures fail so bust out the math.

The frequency of bytes which correspond to x86 instructions
should look different from those of normal traffic, right?

Wrong! Hydra does alphanumeric encoding — No binary!

Hydra pads your shellcode with bytes to make it look
statistically similar to normal traffic.

Just give it sample files, it does the training automatically.



Spectrum Shaping

Hydra learns a 1-byte distribution for the target, then uses
Monte Carlos simulation to make your shellcode mimic this
distribution.

Padding at the end is too simple; Hydra automatically spaces
out your shellcode instructions inserts the blending bytes in
between these instructions.

Spacing is adjustable.

Higher-byte mimicry also possible, under development.



Randomized Address Zone

Sequence of repeated target addresses.
Overwrites %esp on stack to point to payload.

Simple IDS signature: NOPs and repeated numbers = sled +
return zone.

Break signatures by adding random offsets to each address in
the return zone. Aim for the middle of the NOP sled.



Forking Shellcode

Successful exploit = target process hangs! NOT GOOD

Solution: fork()’ing shellcode. Child executes payload, parent
tries to recover the exploited process.

Recovery is hard — correct %eip is normally lost during
overflow.

Need to know target process address space — relative offset.

Hydra fork()s your shellcode for you automatically!



Time-Cipher Shellcode

So can’t use signatures, can’t use statistics, now what?

Emulators! Build stripped down x86 emulator. Dynamically
execute ALL network traffic and look for self-decryption.

Sounds nuts but people have done it!
— Polychronakis citation
— Kruegal dynamic disassembly

Solution? Syscall-based ciphering! Exploit the fact that
emulators can’t handle full OS features.



Time-Cipher Shellcode

Cipher your shellcode with special key that can only be
recovered when executing with a real OS.

Can’t carry the key, that defeats the purpose.
Need the key to be recoverable from the target.
Can’t be static.

Solution: the time() syscall! Use the most significant bytes of
result as the key: time-locked shellcode.



Time-Cipher Shellcode

The key is used to decipher the primary cipher instructions in
the main loop body.

If proper key isn’t recovered then main cipher loop doesn’t
execute correctly — illegal instructions. Payload remains
encrypted and undetected by the emulator.

Cipher chaining — with time as the initialization vector.

Can set a “shell-life” for the code: good for only a short period
of time.



Conclusion

Hydra is a new shellcode polymorphism engine designed to
foil an array of known IDS methods.

Why? Because understanding the problem is half the solution.

Still under development mostly. For future updates check:

— Pratap Prahbu: pvp2105@columbia.edu

— Yingbo Song: yingbo@cs.columbia.edu

Columbia University Intrusion Detection Systems Lab:

— http://www.cs.columbia.edu/ids



mailto:pvp2105@columbia.edu
mailto:yingbo@cs.columbia.edu
http://www.cs.columbia.edu/ids

