
function hooking 
for osx and linux

joe damato
@joedamato

timetobleed.com



slides are on
timetobleed.com



(free jmpesp)



i’m not a security 
researcher.

call me a script kiddie: 
@joedamato





laughinglarry.com



slayerinc.com



dbgrady.files.wordpress.com

assembly is in att syntax



WTF is an ABI ?



WTF is an Application 
Binary 

Interface ?



alignment

thomasgroup.com



calling convention

arianlim.wordpress.com



object file and 
library formats

tandemfs.org



hierarchy of specs



topatoco.com



System V ABI (271 pages)

System V ABI AMD64 Architecture Processor 
Supplement (128 pages)

System V ABI Intel386 Architecture Processor 
Supplement (377 pages)

MIPS, ARM, PPC, and IA-64 too!



mac osx x86-64 calling convention 

based on

System V ABI AMD64 Architecture 
! ! ! Processor Supplement



gregs-wines.com



alignment

thomasgroup.com



end of argument area must be 
aligned on a 16byte boundary.

and $0xfffffffffffffff0, %rsp



calling convention

arianlim.wordpress.com



• function arguments from left to right live in:
%rdi,  %rsi,  %rdx,  %rcx,  %r8,  %r9

• that’s for INTEGER class items.

• Other stuff gets passed on the stack (like 
on i386).

• registers are either caller or callee saved



object file and 
library formats

tandemfs.org



steverubel.typepad.com



ELF Objects

en.wikipedia.org



ELF Objects
• ELF objects have headers

• elf header (describes the elf object)

• program headers (describes segments)

• section headers (describes sections)

• libelf is useful for wandering the elf object extracting 
information.

• the executable and each .so has its own set of data



ELF Object sections
• .text - code lives here 

• .plt - stub code that helps to “resolve” 
absolute function addresses. 

• .got.plt - absolute function addresses; used 
by .plt entries.

• .debug_info - debugging information

• .gnu_debuglink - checksum and filename for 
debug info



ELF Object sections

• .dynsym - maps exported symbol names to 
offsets

• .dynstr - stores exported symbol name 
strings

• .symtab - maps symbol names to offsets

• .strtab - symbol name strings

• more sections for other stuff.



vanachteren.net



Mach-O Objects

developer.apple.com



Mach-O Objects
• Mach-O objects have load commands

• header (describes the mach-o object)

• load commands (describe layout and linkage info)

• segment commands (describes sections)

• dyld(3) describes some apis for touching mach-o 
objects

• the executable and each dylib/bundle has its own set 
of data



Mach-O sections

• __text - code lives here

• __symbol_stub1 - list of jmpq instructions 
for runtime dynamic linking

• __stub_helper -  stub code that helps to 
“resolve” absolute function addresses. 

• __la_symbol_ptr -  absolute function 
addresses; used by symbol stub



Mach-O sections

• symtabs do not live in a segment, they have 
their own load commands.

• LC_SYMTAB - holds offsets for symbol 
table and string table.

• LC_DYSYMTAB - a list of 32bit offsets into 
LC_SYMTAB for dynamic symbols.



blog.makezine.com



nm

000000000048ac90 t Balloc

0000000000491270 T Init_Array

0000000000497520 T Init_Bignum

000000000041dc80 T Init_Binding

000000000049d9b0 T Init_Comparable

000000000049de30 T Init_Dir

00000000004a1080 T Init_Enumerable

00000000004a3720 T Init_Enumerator

00000000004a4f30 T Init_Exception

000000000042c2d0 T Init_File

0000000000434b90 T Init_GC

% nm /usr/bin/ruby

symbol  
“value”

symbol names



objdump
% objdump -D /usr/bin/ruby

offsets opcodes instructions helpful metadata



readelf
% readelf -a /usr/bin/ruby

This is a *tiny* subset of the data available



otool
% otool -l /usr/bin/ruby

This is a *tiny* subset of the data available



nerve.com



strip
• You can strip out whatever sections you 

want....

• but your binary may not run.

• you need to leave the dynamic symbol/
string tables intact or dynamic linking will 
not work.



bassfishin.com



Calling functions

callq *%rbx

callq 0xdeadbeef

other ways, too...



anatomy of a call
412d16:   e8 c1 36 02 00          callq  4363dc # <a_function>

412d1b:  .....

address of this instruction

call opcode
32bit displacement to the 
target function from the next 
instruction.

(objdump output)



anatomy of a call
412d16:   e8 c1 36 02 00          callq  4363dc # <a_function>

412d1b:  .....

412d1b = 4363dc  +   000236c1

(x86 is little endian)

(objdump output)



Hook a_function

Overwrite the displacement so that all calls 
to a_function actually call a different function 
instead.

It may look like this:
int other_function() 
{
        /* do something good/bad */

        /* be sure to call a_function! */
        return a_function();
}



codez are easy
/* CHILL, it’s fucking psuedo code */

while (are_moar_bytes()) {
  curr_ins = next_ins;
  next_ins = get_next_ins();
  if (curr_ins->type == INSN_CALL) {
    if ((hook_me - next_ins) == curr_ins->displacement) {
      /* found a call hook_me!*/
      rewrite(curr_ins->displacement, (replacement_fn - next_ins)); 
      return 0;
    }
  }
}

... right?.....



lemur.com



32bit displacement
• overwriting an existing call with another call

• stack will be aligned

• args are good to go

• can’t redirect to code that is outside of: 

• [rip + 32bit displacement]

• you can scan the address space looking for 
an available page with mmap, though...



Doesn’t work for all

calling a function that is exported by a 
dynamic library works differently.



How runtime dynamic 
linking works (elf)

0x7ffff7afd6e6

.got.plt entry



How runtime dynamic 
linking works (elf)

0x7ffff7afd6e6

.got.plt entry
Initially, the .got.plt entry contains 
the address of the instruction after 

the jmp.



How runtime dynamic 
linking works (elf)

0x7ffff7afd6e6

.got.plt entry
An ID is stored and the rtld is 

invoked.



How runtime dynamic 
linking works (elf)

0x7ffff7b34ac0

.got.plt entry
rtld writes the address of 

rb_newobj to the .got.plt entry.



How runtime dynamic 
linking works (elf)

0x7ffff7b34ac0

.got.plt entry
rtld writes the address of 

rb_newobj to the .got.plt entry.

calls to the PLT entry jump 
immediately to rb_newobj now 

that .got.plt is filled in.



rs.tacklewarehouse.com



Hook the GOT

Redirect execution by overwriting all 
the .got.plt entries for rb_newobj in each 
DSO with a handler function instead.



0xdeadbeef

.got.plt entryVALUE other_function() 
{  
      new_obj = rb_newobj();
      /* do something with  new_obj */
      return new_obj;
}

Hook the GOT

NO, it isn’t. other_function() lives in it’s own DSO, so its 
calls to rb_newobj() use the .plt/.got.plt in its own DSO.

As long as we leave other_function()‘s DSO unmodified, we’ll 
avoid an infinite loop.

WAIT... other_function() calls rb_newobj() isn’t that an infinite loop?



vanachteren.net



tlaneve.files.wordpress.com



elf

mach-o

me



what else is left?

inline functions.



add_freelist
• Can’t hook because add_freelist is inlined:

static inline void
add_freelist(p)
    RVALUE *p;
{
    p->as.free.flags = 0;
    p->as.free.next = freelist;
    freelist = p;
}

• The compiler has the option of 
inserting the instructions of this 
function directly into the callers.

• If this happens, you won’t see any calls.



So... what now?
• Look carefully at the code:

static inline void
add_freelist(p)
    RVALUE *p;
{
    p->as.free.flags = 0;
    p->as.free.next = freelist;
    freelist = p;
}

• Notice that freelist gets updated.

• freelist has file level scope.

• hmmmm......



A (stupid) crazy idea
• freelist has file level scope and lives at some 

static address.

• add_freelist updates freelist, so...

• Why not search the binary for mov instructions 
that have freelist as the target!

• Overwrite that mov instruction with a call to 
our code!

• But... we have a problem. 

• The system isn’t ready for a call instruction.



alignment

thomasgroup.com



calling convention

arianlim.wordpress.com



Isn’t ready? What?
• The 64bit ABI says that the stack must be 

aligned to a 16byte boundary after any/all 
arguments have been arranged.

• Since the overwrite is just some random 
mov, no way to guarantee that the stack is 
aligned.

• If we just plop in a call instruction, we 
won’t be able to arrange for arguments to 
get put in the right registers.

• So now what?



jmp

• Can use a jmp instruction.

• Transfer execution to an assembly stub 
generated at runtime.

• recreate the overwritten instruction

• set the system up to call a function

• do something good/bad

• jmp back when done to resume execution



picasaweb.google.com/lh/photo/-R3BPlqOq8MfQGFTduIqCA



checklist
• save and restore caller/callee saved 

registers.

• align the stack.

• recreate what was overwritten.

• arrange for any arguments your 
replacement function needs to end up in 
registers.

• invoke your code.

• resume execution as if nothing happened.



this instruction updates the freelist and comes from 
add_freelist:

Can’t overwrite it with a call instruction because the 
state of the system is not ready for a function call.

The jmp instruction and its offset are 5 bytes wide.
Can’t grow or shrink the binary, so insert 2 one byte 

NOPs.

address of assembly stub



this instruction updates the freelist and comes from 
add_freelist:

Can’t overwrite it with a call instruction because the 
state of the system is not ready for a function call.

The jmp instruction and its offset are 5 bytes wide.
Can’t grow or shrink the binary, so insert 2 one byte 

NOPs.

must jump back here



shortened assembly 
stub



shortened assembly 
stub

void handler(VALUE freed_object) 
{
        mark_object_freed(freed_object);
        return;
}



and it actually works.

gem install memprof
http://github.com/ice799/memprof

http://github.com/ice799/memprof
http://github.com/ice799/memprof


listverse.files.wordpress.com



Sample Output
require 'memprof'
Memprof.start
require "stringio"
StringIO.new
Memprof.stats

    108 /custom/ree/lib/ruby/1.8/x86_64-linux/stringio.so:0:__node__
     14 test2.rb:3:String
      2 /custom/ree/lib/ruby/1.8/x86_64-linux/stringio.so:0:Class
      1 test2.rb:4:StringIO
      1 test2.rb:4:String
      1 test2.rb:3:Array
      1 /custom/ree/lib/ruby/1.8/x86_64-linux/stringio.so:0:Enumerable



a web-based heap visualizer and leak analyzer
memprof.com



memprof.com
a web-based heap visualizer and leak analyzer



a web-based heap visualizer and leak analyzer
memprof.com



memprof.com
a web-based heap visualizer and leak analyzer



memprof.com
a web-based heap visualizer and leak analyzer



memprof.com
a web-based heap visualizer and leak analyzer



community.devexpress.com



config.middleware.use(Memprof::Tracer)

{
  "time": 4.3442,

  "rails": {
    "controller": "test",
    "action": "index"
  },

  "request": {
    "REQUEST_PATH": "/test,,
    "REQUEST_METHOD": "GET"
  },

total time for request

rails controller/action

request env info



  "mysql": {
    "queries": 3,
    "time": 0.00109302
  },

  "gc": {
    "calls": 8,
    "time": 2.04925
  },

config.middleware.use(Memprof::Tracer)

8 calls to GC
2 secs spent in GC

3 mysql queries



  "objects": {
    "created": 3911103,
    "types": {
      "none": 1168831,
      "object": 1127,
      "float": 627,
      "string": 1334637,
      "array": 609313,
      "hash": 3676,
      "match": 70211
    }
  }
}

config.middleware.use(Memprof::Tracer)

3 million objs created

lots of strings

lots of arrays

regexp matches

object instances

1 million method calls



smiley-faces.org



mindfulsecurity.com



evil lives
http://github.com/ice799/memprof/tree/dnw

• makes ruby faster!11!!1

• hooks read syscall

• looks for magic cookie (JOE)

• turns off GC

• Ruby is fast.

http://github.com/ice799/memprof/tree/dnw
http://github.com/ice799/memprof/tree/dnw


it makes ruby faster!!1!

look a bullshit 
benchmark!



it makes ruby faster!!1!
#NORMAL RUBY!!!!11!!

[joe@mawu:/Users/joe/code/defcon/memprof/ext]% ab -c 10 -n 200 http://blah:
4567/hi/JOE

Benchmarking blah (be patient)
Completed 100 requests
Completed 200 requests
Finished 200 requests

Concurrency Level:      10
Time taken for tests:   7.462 seconds
Complete requests:      200
Failed requests:        0
Write errors:           0
Requests per second:    26.80 [#/sec] (mean)
Time per request:       373.108 [ms] (mean)
Time per request:       37.311 [ms] (mean, across all concurrent requests)

http://blah:4567/hi/JOE
http://blah:4567/hi/JOE
http://blah:4567/hi/JOE
http://blah:4567/hi/JOE


it makes ruby faster!!1!
# fast0r RUBY!!!11!111
[joe@mawu:/Users/joe/code/defcon]% ab -c 10 -n 200 http://blah:4567/hi/JOE

Benchmarking blah (be patient)
Completed 100 requests
Completed 200 requests
Finished 200 requests

Concurrency Level:      10
Time taken for tests:   6.594 seconds
Complete requests:      200
Failed requests:        0
Write errors:           0
Requests per second:    30.33 [#/sec] (mean)
Time per request:       329.708 [ms] (mean)
Time per request:       32.971 [ms] (mean, across all concurrent requests)

http://blah:4567/hi/JOE
http://blah:4567/hi/JOE


you can do anything

• this example is stupid, but you can do 
anything.

• hook read/write and phone home with 
data.

• fork a backdoor when a specific cookie is 
seen

• whatever



break.com



zanyvideos.com



injectso

• written by Shaun Clowes

• injects libraries into running processes 
using ptrace(2).

• super clever hack!



hockeydrunk.com



injecting live processes

• ptrace(2)

• allows you to view and modify the 
register set and address space of another 
process

• permissions on memory are ignored



fucking injectso, how 
does it work?

• attach to target process using ptrace

• save a copy of a small piece of the program 
stack.

• save a copy of the register set

• create a fake stack frame with a saved return 
address of 0



fucking injectso, how 
does it work?• set register set to point at dlopen

• rip = &dlopen

• rdi = dso name

• rsi = mode

• let er rip, waitpid and it’ll segfault on return 
to 0.

• restore stack, register set, resume as 
normal.



ptrace evil dso
• remote allocating 

memory is a pain in 
the ass.

• generating segfaults in 
running processes 
might be bad (core 
dumps, etc).

• binary patching is 
hard, doing it with 
ptrace is harder.

• getting the user to 
use your library 
might be hard.

• already running 
processes will need 
to be killed first.

• need to poison each 
time app is started.

• binary patching is 
hard.



realmofraven.com



combine ‘em

• use injectso hack to load an evil dso

• evil dso will take it from there



64bit injectso port
• ported by Stealth

• http://c-skills.blogspot.com/2007/05/
injectso.html

• i did some trivial cleanup and put the codez 
on github

• http://github.com/ice799/injectso64

• tested it on 64bit ubuntu VM, works.

http://c-skills.blogspot.com/2007/05/injectso.html
http://c-skills.blogspot.com/2007/05/injectso.html
http://c-skills.blogspot.com/2007/05/injectso.html
http://c-skills.blogspot.com/2007/05/injectso.html
http://github.com/ice799/injectso64
http://github.com/ice799/injectso64


injectso 
+ 

evil-binary-patching-dso

customdynamics.com



customdynamics.com



buycostumes.com



emeraldinsight.com



how to defend against it
• NX bit                                -                  call mprotect

• strip debug information        -   mostly prebuilt binaries

• statically link everything        -  extremely large binaries

• put all .text code in ROM     -                           maybe?

• don’t load DSOs at runtime  -           no plugins, though

• disable ptrace                      -               no gdb/strace.

• check /proc/<pid>/maps       -                            word.



slashgear.com



my future research: 
exploring alternative 

binary formats.



slayerinc.com



globalhealthandfitness.com



alignment

thomasgroup.com



calling convention

arianlim.wordpress.com



object file and 
library formats

tandemfs.org



questions?
joe damato

@joedamato
timetobleed.com

http://timetobleed.com/string-together-global-offset-tables-to-build-a-ruby-memory-profiler/
http://timetobleed.com/hot-patching-inlined-functions-with-x86_64-asm-metaprogramming/
http://timetobleed.com/rewrite-your-ruby-vm-at-runtime-to-hot-patch-useful-features/
http://timetobleed.com/dynamic-linking-elf-vs-mach-o/
http://timetobleed.com/dynamic-symbol-table-duel-elf-vs-mach-o-round-2/

http://timetobleed.com/string-together-global-offset-tables-to-build-a-ruby-memory-profiler/
http://timetobleed.com/string-together-global-offset-tables-to-build-a-ruby-memory-profiler/
http://timetobleed.com/string-together-global-offset-tables-to-build-a-ruby-memory-profiler/
http://timetobleed.com/string-together-global-offset-tables-to-build-a-ruby-memory-profiler/
http://timetobleed.com/string-together-global-offset-tables-to-build-a-ruby-memory-profiler/
http://timetobleed.com/string-together-global-offset-tables-to-build-a-ruby-memory-profiler/
http://timetobleed.com/dynamic-linking-elf-vs-mach-o/
http://timetobleed.com/dynamic-linking-elf-vs-mach-o/
http://timetobleed.com/dynamic-symbol-table-duel-elf-vs-mach-o-round-2/
http://timetobleed.com/dynamic-symbol-table-duel-elf-vs-mach-o-round-2/


tallteacher.files.wordpress.com



“Interesting Behavior of 
OS X”

• Steven Edwards (winehacker@gmail.com)

• november 29 2007

• http://www.winehq.org/pipermail/wine-
devel/2007-November/060846.html

mailto:winehacker@gmail.com
mailto:winehacker@gmail.com
http://www.winehq.org/pipermail/wine-devel/2007-November/060846.html
http://www.winehq.org/pipermail/wine-devel/2007-November/060846.html
http://www.winehq.org/pipermail/wine-devel/2007-November/060846.html
http://www.winehq.org/pipermail/wine-devel/2007-November/060846.html


leopard has a pe 
loader?

handle = dlopen("./procexp.exe", RTLD_NOW | RTLD_FIRST );

steven-edwardss-imac:temp sedwards$ ./a.out
dlopen(./procexp.exe, 258): Library not loaded: WS2_32.dll
 Referenced from: /Users/sedwards/Library/Application
Support/CrossOver/Bottles/winetest/drive_c/windows/temp/
procexp.exe
 Reason: image not found



cfs2.tistory.com


