
1

Overview
What is Razorback?

3

Razorback Is…

● An Open Source framework (GPLv2) to enable
advanced processing of data and detection of
events

● Able to get data as it traverses the network

● Able to get data after it’s received by a server

● Able to perform advanced event correlation

● …Our answer to an evolving threat landscape

4

The Challenge is Different

● Attacks have switched from server attacks to
client attacks

● Common attack vectors are easily obfuscated

▸ Scripting languages are infinitely variable

▸ Compression obscures attack signatures

▸ And more!

● File formats are made by insane people

● Back-channel systems are increasingly difficult
to detect

5

The Problem With Real-Time

● Inline systems must emulate the processing of
thousands of desktops

● Detection of many backchannels is most
successful with statistical evaluation of network
traffic

● Deep file inspection requires too much time to
process!

6

Fill the Gap

● A system is needed that can handle varied
detection needs

● A system is needed that extensible, open and
scalable

● A system is needed that facilitates incident
response, not just triggers it

Architecture
What makes it tick?

8

Framework Goals

 Provide entry for any arbitrary data type
 Provide routing of input data to any number of

relevant data processors
 Provide alerting to any framework-capable

system
 Provide verbose, detailed logging
 Make intelligent use of all data

9

Razorback is comprised of…

● A collection of elements working together

● Each element performs a discrete task

● Elements are tied together via the Dispatcher

● Nugget types:

 Correlation

 Defense Update

 Workstation

 Data Collection

 Data Detection/Analysis

 Output

 Intelligence

10

The System

Dispatcher

Collection

Nugget
Detection

Nugget Detection

Nugget
Detection

Nuggets

Database

Output Nugget
Output Nugget

Output Nuggets

Collection

Nugget Collection

Nuggets

Other Types

of Nuggets

11

The Dispatcher

 Handles all communication between nuggets
 Handles database interactions
 Database driven
 APIs are available for easy nugget

development

12

Database

● Configuration information

● Event information

● Contextual information

● Metadata

● Provides a wealth of information for correlating
events and activities

13

General Nugget Functionality

● Dispatcher Registration

▸ Types of data handled

▸ Types of output generated

● UUIDs

▸ Identifier of nuggets

▸ Type of nugget

▸ Types of data handled and/or provided

▸ Allows for easy addition and removal of elements

14

Collection Nugget

● Capture data

▸ From the network

▸ From a network device directly

▸ From log files

● Contact dispatcher for handling

▸ Has this data been evaluated before?

▸ Send the data to the Dispatcher

15

Detection Nugget

● Handles incoming data from Collection Nuggets

● Splits incoming data into logical sub-blocks

▸ Requests additional processing of sub-blocks

● Provides alerting feedback to the Dispatcher

16

Output Nugget

● Receives alert notification from Dispatcher

● If alert is of a handled type, additional
information is requested:

▸ Short Data

▸ Long Data

▸ Complete Data Block

▸ Normalized Data Block

● Sends output data to relevant system

17

Intelligence Nugget

● Does not generate “alerts” per se

● Generates data that could potentially be used
later for trending or event correlation

18

Correlation Nugget

● Interacts with the database directly

● Provides ability to:

▸ Detect trending data

▸ Identify “hosts of interest”

▸ Track intrusions through the network

▸ Initiate defense updates

19

Defense Update Nugget

● Receives update instructions from dispatcher

● Performs dynamic updates of network
device(s)

● Update multiple devices

● Update multiple devices of different types!

● Notifies dispatcher of defense update actions

20

Workstation Nugget

● Authenticates on a per-analyst basis

● Provides analyst with ability to:

▸ Manage nugget components

▸ Manage alerts and events

● Consolidate events

● Add custom notes

● Set review flags

● Delete events

▸ Review system logs

Concept of Operations
How do they work together?

22

Registration Phase

● Nuggets are brought online

● Nuggets register with the dispatcher:

▸ Their existence

▸ The data types they handle

▸ How many threads they can run at once

● Dispatcher tracks via routing table

● Dispatcher hands back a unique “nugget id”

23

Hi! I exist!

Dispatcher

Detection

Nugget

Detection

Nugget

Collection

Nugget

Output Nugget

registerNugget()

registerNugget()

registerNugget()

registerNugget()

24

Traffic comes in…

Data

Collector

Dispatcher

Database
Web traffic

SMTP traffic

API

Query Database Local Cache

Check cache

Data/

Metadata

Threads out

COLLECTOR

25

Dispatcher farms out detection…

Dispatcher

Detection

Nugget
Javascript

 Analysis

PDF Analysis

Database

Alert/Event data

Collected data

Detection results

Embedded sub-component data

Detection

Nugget

26

Output nuggets are informed…

Dispatcher

Output Nugget

Output Nugget

“I come bearing gifts”

“I come bearing gifts”

“No, thanks”

“Yes, please!”

Delicious Alert Data

27

Cache

● We want to avoid reprocessing files and sub-
components we’ve already looked at

● MD5 and size are stored for files and
subcomponents both bad and good

● But, after an update to any detection nugget,
all known-good entries are thereby declared
“tainted”

28

Why Taint known good?

● Why taint known good?

▸ Previously analyzed files may be found to be bad

● Why not just remove those entries?

▸ We don’t want to rescan all files

▸ If we see an alert for a previously scanned file
matching the same MD5 and size, we can alert
retroactively

Case Study: SMTP
What happens when an email is received?

30

Handling SMTP Traffic

● A PDF with a malicious embedded EXE is
attached to an email

● How does the system work to tell us about this
malicious attachment?

● Components in use

● Track the data

Current Capabilities
Nuggets that are currently available. Many more to come, and you can
help!

32

● Snort-as-a-Collector (SaaC)

▸ SMTP mail stream capture

▸ Web capture

▸ DNS capture

● Custom post-mortem debugger

▸ Traps applications as they crash

▸ Sends the file that triggered the crash to Dispatcher

▸ Sends the metadata of the crash to the Dispatcher

Collection Nuggets

33

Detection Nuggets

● Zynamics PDF Dissector

▸ Deobfuscation and normalization of objects

▸ Target known JavaScript attacks

● JavaScript Analyzer (w/ Zynamics)

▸ Search for shellcode in unescaped blocks

▸ Look for heap spray

▸ Look for obvious obfuscation possibilities

www.zynamics.com/dissector.html

34

Detection Nuggets (cont’d…)

● Shellcode Analyzer (w/ libemu)

▸ Detection and execution of shellcode

▸ Look for code blocks that unwrap shellcode

▸ Win32 api hooking

● Determine the function call

● Capture the arguments

▸ Provide alerts that include shellcode action

libemu.carnivore.it

35

Detection Nuggets (cont’d…)

● Office Cat Nugget

▸ Full Office file parsing

▸ Vuln-centric detection against known threats

● SWF Nugget

▸ Decompresses and analyzes flash

▸ Detects known flash threats

36

Detection Nuggets (cont’d…)

● ClamAV Nugget

▸ Analyze any format

▸ Signature- and pattern-based detection

▸ Updatable signature DB

▸ Can further serve as a collector

▸ Can issue defense updates

37

Output Nuggets

● Deep Alerting System

▸ Provide full logging output of all alerts

▸ Write out each component block

▸ Include normalized view of documents as well

● Maltego Interface

▸ Provide data transformations targeting the
Razorback database

www.paterva.com

38

Workstation Nuggets

● CLI functionality to query:

▸ Alerts, events, and incidents

▸ Nugget status

▸ Display metadata

▸ Run standardized report set

Programming Interfaces
How are nuggets created?

40

Custom API

● API provided for easy creation of nuggets

● The API provides functionality for:

▸ Registering a new nugget

▸ Sending and receiving data

▸ Cache and database interaction

● Threading is handled automagically!

41

General Functions

● registerNugget()

▸ Type of nugget

▸ Type(s) of data handled

▸ Connection information

● registerHandler()

▸ Specifies handler function

▸ Type(s) of data handled for that function

▸ Can register multiple handlers per nugget

42

Collection and Detection Nuggets

● sendData()

▸ Sends captured data to the dispatcher

● sendMetaData()

▸ Adds any additional information about the collected
or parsed data

● sendAlert()

▸ Specific alert data to be sent to Output Nuggets

43

Intelligence Nuggets

● Functions provide access to modify database

● Types of Intelligence Nuggets supported:

▸ Email

▸ Web

▸ DNS

● Easy to add new protocols

▸ Create database schema

▸ Provide function for accessing that schema

44

What if I don’t like C?

● Nuggets can be written in any language

● Wrappers providing interfaces to the API
functions are provided

▸ Ruby

▸ Python

▸ Perl

▸ If you can wrap C, you can create an API

Conclusion
Let’s wrap this up!

46

Razorback Framework…

● Extensible. Open. Modular.

● All functions are separated and distributed

● Core is written in C, APIs available for other
languages as well

● Limitless possibilities!

47

This is great! How can I help?

● See a need for a nugget? Write one and send
it in!

● Full source code available on Sourceforge

▸ http://sourceforge.net/projects/razorbacktm

▸ http://sourceforge.net/projects/nuggetfarm

● Bug tracking via Sourceforge Trac

48

Questions??

● Patrick Mullen

▸ pmullen@sourcefire.com

▸ phoogazi on Twitter

● Ryan Pentney

▸ rpentney@sourcefire.com

● Sourcefire VRT

▸ labs.snort.org

▸ vrt-sourcefire.blogspot.com

▸ VRT_Sourcefire on Twitter

 Razorback Team:
Alex Kambis

Alex Kirk

Alain Zidouemba

Christopher McBee

Kevin Miklavcic

Lurene Grenier

Matt Olney

Matt Watchinski

Nigel Houghton

Patrick Mullen

Ryan Pentney

Sojeong Hong

