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Overview 
What is Razorback? 
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Razorback Is… 

● An Open Source framework (GPLv2) to enable 
advanced processing of data and detection of 
events 

● Able to get data as it traverses the network 

● Able to get data after it’s  received by a server 

● Able to perform advanced event correlation 

 

 

● …Our answer to an evolving threat landscape 
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The Challenge is Different 

● Attacks have switched from server attacks to 
client attacks 

● Common attack vectors are easily obfuscated 

▸ Scripting languages are infinitely variable 

▸ Compression obscures attack signatures 

▸ And more! 

● File formats are made by insane people 

● Back-channel systems are increasingly difficult 
to detect 
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The Problem With Real-Time 

● Inline systems must emulate the processing of 
thousands of desktops 

● Detection of many backchannels is most 
successful with statistical evaluation of network 
traffic 

● Deep file inspection requires too much time to 
process! 
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Fill the Gap 

● A system is needed that can handle varied 
detection needs 

● A system is needed that extensible, open and 
scalable 

● A system is needed that facilitates incident 
response, not just triggers it 



Architecture 
What makes it tick? 
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Framework Goals 

 Provide entry for any arbitrary data type 
 Provide routing of input data to any number of 

relevant data processors 
 Provide alerting to any framework-capable 

system 
 Provide verbose, detailed logging  
 Make intelligent use of all data 
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Razorback is comprised of… 

● A collection of elements working together 

● Each element performs a discrete task 

● Elements are tied together via the Dispatcher 

● Nugget types: 

 Correlation 

 Defense Update 

 Workstation 

 Data Collection 

 Data Detection/Analysis 

 Output 

 Intelligence 
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The System 

Dispatcher 

Collection 

Nugget 
Detection 

Nugget Detection 

Nugget 
Detection 

Nuggets 

Database 

Output Nugget 
Output Nugget 

Output Nuggets 

Collection 

Nugget Collection 

Nuggets 

Other Types 

of Nuggets 



11 

The Dispatcher 

 Handles all communication between nuggets 
 Handles database interactions 
 Database driven 
 APIs are available for easy nugget 

development 
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Database 

● Configuration information 

● Event information 

● Contextual information 

● Metadata 

● Provides a wealth of information for correlating 
events and activities 
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General Nugget Functionality 

● Dispatcher Registration 

▸ Types of data handled 

▸ Types of output generated 

● UUIDs 

▸ Identifier of nuggets 

▸ Type of nugget 

▸ Types of data handled and/or provided 

▸ Allows for easy addition and removal of elements 
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Collection Nugget 

● Capture data 

▸ From the network 

▸ From a network device directly 

▸ From log files 

● Contact dispatcher for handling 

▸ Has this data been evaluated before? 

▸ Send the data to the Dispatcher 
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Detection Nugget 

● Handles incoming data from Collection Nuggets 

● Splits incoming data into logical sub-blocks 

▸ Requests additional processing of sub-blocks 

● Provides alerting feedback to the Dispatcher 
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Output Nugget 

● Receives alert notification from Dispatcher 

● If alert is of a handled type, additional 
information is requested: 

▸ Short Data 

▸ Long Data 

▸ Complete Data Block 

▸ Normalized Data Block 

● Sends output data to relevant system 
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Intelligence Nugget 

● Does not generate “alerts” per se 

● Generates data that could potentially be used 
later for trending or event correlation 
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Correlation Nugget 

● Interacts with the database directly 

● Provides ability to: 

▸ Detect trending data 

▸ Identify “hosts of interest” 

▸ Track intrusions through the network 

▸ Initiate defense updates 
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Defense Update Nugget 

● Receives update instructions from dispatcher 

● Performs dynamic updates of network 
device(s) 

● Update multiple devices 

● Update multiple devices of different types! 

● Notifies dispatcher of defense update actions 
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Workstation Nugget 

● Authenticates on a per-analyst basis 

● Provides analyst with ability to: 

▸ Manage nugget components 

▸ Manage alerts and events 

● Consolidate events 

● Add custom notes 

● Set review flags 

● Delete events 

▸ Review system logs 

 



Concept of Operations 
How do they work together? 
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Registration Phase 

● Nuggets are brought online 

● Nuggets register with the dispatcher: 

▸ Their existence  

▸ The data types they handle 

▸ How many threads they can run at once 

● Dispatcher tracks via routing table 

● Dispatcher hands back a unique “nugget id” 
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Hi! I exist! 
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24 

Traffic comes in… 
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Dispatcher farms out detection… 
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Output nuggets are informed… 

Dispatcher 

Output Nugget 

Output Nugget 

“I come bearing gifts” 
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“Yes, please!” 

Delicious Alert Data 
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Cache 

● We want to avoid reprocessing files and sub-
components we’ve already looked at 

● MD5 and size are stored for files and 
subcomponents both bad and good 

● But, after an update to any detection nugget, 
all known-good entries are thereby declared 
“tainted” 
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Why Taint known good? 

● Why taint known good? 

▸ Previously analyzed files may be found to be bad 

● Why not just remove those entries? 

▸ We don’t want to rescan all files 

▸ If we see an alert for a previously scanned file 
matching the same MD5 and size, we can alert 
retroactively 

 



Case Study: SMTP 
What happens when an email is received? 



30 

Handling SMTP Traffic 

● A PDF with a malicious embedded EXE is 
attached to an email 

● How does the system work to tell us about this 
malicious attachment? 

● Components in use 

● Track the data 

 



Current Capabilities 
Nuggets that are currently available.  Many more to come, and you can 
help! 
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● Snort-as-a-Collector (SaaC) 

▸ SMTP mail stream capture 

▸ Web capture 

▸ DNS capture 

● Custom post-mortem debugger 

▸ Traps applications as they crash 

▸ Sends the file that triggered the crash to Dispatcher 

▸ Sends the metadata of the crash to the Dispatcher 

Collection Nuggets 
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Detection Nuggets 

● Zynamics PDF Dissector 

▸ Deobfuscation and normalization of objects 

▸ Target known JavaScript attacks 

● JavaScript Analyzer (w/ Zynamics) 

▸ Search for shellcode in unescaped blocks 

▸ Look for heap spray 

▸ Look for obvious obfuscation possibilities 

 

 

 

www.zynamics.com/dissector.html 
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Detection Nuggets (cont’d…) 

● Shellcode Analyzer (w/ libemu) 

▸ Detection and execution of shellcode 

▸ Look for code blocks that unwrap shellcode 

▸ Win32 api hooking 

● Determine the function call 

● Capture the arguments 

▸ Provide alerts that include shellcode action 

 

   

 

libemu.carnivore.it 
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Detection Nuggets (cont’d…) 

● Office Cat Nugget 

▸ Full Office file parsing  

▸ Vuln-centric detection against known threats 

 

● SWF Nugget 

▸ Decompresses and analyzes flash 

▸ Detects known flash threats 
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Detection Nuggets (cont’d…) 

● ClamAV Nugget 

▸ Analyze any format 

▸ Signature- and pattern-based detection 

▸ Updatable signature DB 

▸ Can further serve as a collector  

▸ Can issue defense updates 
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Output Nuggets 

● Deep Alerting System 

▸ Provide full logging output of all alerts 

▸ Write out each component block 

▸ Include normalized view of documents as well 

 

● Maltego Interface 

▸ Provide data transformations targeting the 
Razorback database 

 

 

www.paterva.com 
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Workstation Nuggets 

● CLI functionality to query: 

▸ Alerts, events, and incidents 

▸ Nugget status 

▸ Display metadata 

▸ Run standardized report set 



Programming Interfaces 
How are nuggets created? 



40 

Custom API 

● API provided for easy creation of nuggets 

● The API provides functionality for: 

▸ Registering a new nugget 

▸ Sending and receiving data 

▸ Cache and database interaction 

● Threading is handled automagically! 
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General Functions 

● registerNugget() 

▸ Type of nugget 

▸ Type(s) of data handled 

▸ Connection information 

● registerHandler() 

▸ Specifies handler function 

▸ Type(s) of data handled for that function 

▸ Can register multiple handlers per nugget 
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Collection and Detection Nuggets 

● sendData() 

▸ Sends captured data to the dispatcher 

● sendMetaData() 

▸ Adds any additional information about the collected 
or parsed data 

● sendAlert() 

▸ Specific alert data to be sent to Output Nuggets 
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Intelligence Nuggets 

● Functions provide access to modify database 

● Types of Intelligence Nuggets supported: 

▸ Email 

▸ Web 

▸ DNS 

● Easy to add new protocols 

▸ Create database schema 

▸ Provide function for accessing that schema 
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What if I don’t like C? 

● Nuggets can be written in any language 

● Wrappers providing interfaces to the API 
functions are provided 

▸ Ruby 

▸ Python 

▸ Perl 

▸ If you can wrap C, you can create an API 

 



Conclusion 
Let’s wrap this up! 
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Razorback Framework… 

● Extensible. Open. Modular. 

● All functions are separated and distributed 

● Core is written in C, APIs available for other 
languages as well 

● Limitless possibilities! 
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This is great!  How can I help? 

● See a need for a nugget?  Write one and send 
it in! 

● Full source code available on Sourceforge 

▸ http://sourceforge.net/projects/razorbacktm 

▸ http://sourceforge.net/projects/nuggetfarm 

● Bug tracking via Sourceforge Trac 
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Questions?? 

● Patrick Mullen 

▸ pmullen@sourcefire.com 

▸ phoogazi on Twitter 

● Ryan Pentney 

▸ rpentney@sourcefire.com 

● Sourcefire VRT 

▸ labs.snort.org 

▸ vrt-sourcefire.blogspot.com 

▸ VRT_Sourcefire on Twitter 
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