CIPHERSPACES/DARKNETS: AN OVERVIEW OF ATTACK STRATEGIES

Adrian Crenshaw

About Adrian

- I run Irongeek.com
- I have an interest in InfoSec education
- I don't know everything I'm just a geek with time on my hands
- (ir)Regular on the ISDPodcast http://www.isdpodcast.com
- Researcher for Tenacity Institute http://www.tenacitysolutions.com

A little background...

- Darknets: There are many definitions, but the one I'm working from is "anonymizing networks"
- Use of encryption and proxies (some times other peers) to obfuscate who is communicating to whom
- Sometimes referred to as Cipherspace (love that term)
- Tor and I2P will be my reference examples, but there are others

...and some notes

- Things get subtle
- Terms vary from researcher to researcher
- Many weaknesses are interrelated
- Other anonymizing networks:
 Morphmix/Tarzan/Mixminion/Mixmaster/JAP/MUT
 E/AntsP2P/Haystack
- Focus on Tor and I2P for illustrations when needed
- Academic vs. real world

Threat Model and Adversaries matter

- Threat Model: You can't protect against everything!
 - Some protocols may be lost causes
 - Users may do something to reveal themselves
 - Does an attack reveal the Client/Host or just reduces the anonymity set?
- Active vs. Passive attackers
- Location, Location, Location:
 - Internal vs. External
- Adversaries: Vary by power and interest
 - Nation States
 - Western Democracies vs. Others
 - Government agency with limited resources
 - ISP/Someone with a lot of nodes on the network
 - Private interests groups (RIAA/MPAA)
 - Adrian (AKA: Some shmuck with time on his hands)

Tor: The Onion Router

- Layered encryption
- Bi-directional tunnels
- Has directory servers
- Mostly focused on out proxying to the Internet

12P

- Unidirectional connections: In tunnels and out tunnels
- Information about network distributed via distributed hash table (netDB)
- Layered encryption
- Mostly focused on anonymous services
- More info at http://www.i2p2.de/

12P Encryption Layers

- EIGamal/SessionTag+AES from A to H
- Private Key AES from A to D and E to H
- Diffie-Hellman/Station-To-Station protocol + AES

Silly Garlic Routing

Adrian

Irongeek.com

UN-TRUSTED EXIT POINTS

You are only as anonymous as the data you send!

Overview

Mostly Tor centric:

- Is the exit point for traffic looking at the data?
- Traffic may be encrypted inside the network, but not once it is outbound!

Incidents

- Dan Egerstad and the "Embassy Hack" http://www.wired.com/politics/security/news/200

 7/09/embassy hacks
- Tons of passwords sent via plain text protocols (POP3/SMTP/HTTP Basic/Etc)
- Moxie Marlinspike did something similar with SSLStrip http://intrepidusgroup.com/insight/2009/02/moxie-marlinspike-un-masks-tor-users/

Do you trust your exit node?

Mitigation

- Tor is for anonymity, not necessarily security
- Use end-to-end encryption/Don't use plain-text protocols
- Plain text protocols that send usernames/email addresses in the clear are not very anonymous now are they?

DNS LEAKS, OTHER PROTOCOL LEAKS AND APPLICATION LAYER PROBLEMS

Overview

- Does all traffic go though the proxy?
- DNS Leaks are a classic example
- Badly configured proxy setting could lead some types of traffic to go elsewhere (outside of cipherspace)
- Snooper can use web bugs to figure out your location http://www.irongeek.com/i.php?page=security/webbugs
- HTTPS is a good example, but plugins can also be an issue
- Application level stuff in general is a problem
- Javascript is just hosed as far as reducing you anonymity set See: Gregory Fleischer, DEFCON 17: Attacking Tor at the Application Layer

DNS Leaks

Monitored DNS Server

Irongeek.com

Mitigating DNS Leaks

- Sniff for traffic leaving your box on port 53. The libPcap capture filter: port 53 should work in most cases.
- In Firefox, under about:config set network.proxy.socks_remote_dns to true
- Torbutton should help
- Other applications vary
- May have to firewall off 53 in some cases
- May want to edit torrc, and add:

DNSPort 53

AutomapHostsOnResolve 1

Then set your box's DNS to point to 127.0.0.1

Grabbing content outside of the Darknet

Slightly Related: Cookies/Supercookies/Etc

Cookie image from brainloc on sxc.hu via Wikipedia Irongeek.com

Make hidden server contact you over public Internet

Another example, Bittorrent Issues

http://hal.inria.fr/docs/00/47/15/56/PDF/TorBT.pdf

Again, If Tor is only being used for contacting the tracker and SSL is not used, I could change the returned peers list to point to me as one of the sources and watch for the outside contact, then try to correlate an IP

I may then be able to infer the sender/receiver of other non-Bittorrent traffic because of Tor's shared circuits.

Irongeek.com

Yet Another Example: IRC Ident

General Mitigations

Client wise:

- Make sure your browser is set to send all traffic though the darknet, or none at all
- Look into firewall rules
- Limit plugins used
- Use a separate browser
- Check against:http://decloak.net/http://panopticlick.eff.org/

Hidden server wise:

- Patch your stuff
- Don't run on a box that routes to the Internet

ATTACKS ON CENTRALIZED RESOURCES/INFRASTRUCTURE ATTACKS/DoS ATTACKS

Overview

- Not so much against individual nodes, but the network in general
- Whole bunch of categories, not comprehensive:
 - Starvation attacks
 - Partition attacks
 - Flooding
- Standard DDoS attacks against resources inside and outside of the network (if going though the network) are likely to be soaked by other peers
- Shared known infrastructure can be a problem
- Total (or at least severe) blocking of the Internet

Incidents

- China blocked access to the core directory servers of Tor on September 25th 2009 https://blog.torproject.org/blog/tor-partially-blocked-china
- Other blocking of Internet access. (Egypt, Libya, Iran)

Tor Directory Server

DoS of directory servers

Mitigation

- Bridge nodes (Tor)
- Distributed infrastructure (I2P)
 - Taking out dev site would still be an issue
- Distributed Hash Table
- Protocol obfuscation
- Total/Severe blocking will take a bit more: (see next slide)

Mesh/Store and forward

For more info on mesh networks

- Needs a clear front runner for setting up such a system
- Wikipedia if nothing else
 http://en.wikipedia.org/wiki/Wireless mesh network
- Village Infrastructure in a Kit-Alpha (VIKA) Project http://www.cuwin.net/node/325
- U.S. Underwrites Internet Detour Around Censors
 http://www.nytimes.com/2011/06/12/world/12internet.ht
 ml? r=2&pagewanted=all

CLOCK BASED ATTACKS

Overview

- Some protocols allow you to check the remote system's clock
- Clock difference could be an issue
- Minor clock issues may need statistical analysis

Incidents

- For skew, see: Steven J. Murdoch, "Hot or Not: Revealing Hidden Services by their Clock Skew" University of Cambridge, Cambridge, 2006 http://www.freehaven.net/anonbib/cache/HotOrNot.pdf
- I2P Clock differences in I2P <u>http://www.irongeek.com/i.php?page=security/darknets-i2p-identifying-hidden-servers</u>

Clock Differences

Time Difference	Retrieval Time	Host	Header
40.417	0.436	89.31.112.91	Apache/2.2.13 (Linux/SUSE)
50.294	10.549	medosbor.i2p	Apache/2.2.13 (Linux/SUSE)
3.418	0.35	85.229.85.244	Apache/2.2.15 (Debian)
4.325	5.059	jonatan.walck.i2p	Apache/2.2.15 (Debian)
-4325.58	0.353	84.55.73.228	Apache/2.2.3 (CentOS)
-4321.66	8.946	ipredia.i2p	Apache/2.2.3 (CentOS)
4488.434	0.702	130.241.45.216	Apache/2.2.9 (Debian) PHP/5.2.6-1+lenny8 with Suhosin-Patch
4490.365	4.894	error.i2p	Apache/2.2.9 (Debian) PHP/5.2.6-1+lenny8 with Suhosin-Patch
2.407	4.89	bolobomb.i2p	Apache/2.2.9 (Debian) PHP/5.2.6-1+lenny9 with Suhosin-Patch mod_ssl/2.2.9 OpenSSL/0.9.8g
2.421	0.091	83.222.124.19	Apache/2.2.9 (Debian) PHP/5.2.6-1+lenny9 with Suhosin-Patch mod_ssl/2.2.9 OpenSSL/0.9.8g
3.43	0.282	188.40.181.33	lighttpd/1.4.22
5.366	2.901	docs.i2p2.i2p	lighttpd/1.4.22
6.274	3.673	zzz.i2p	lighttpd/1.4.22
53.415	0.26	93.174.93.93	Microsoft-IIS/6.0
54.404	3.92	colombo-bt.i2p	Microsoft-IIS/6.0
3.287	0.531	www.i2p2.i2p	nginx/0.6.32
3.429	0.285	46.4.248.202	nginx/0.6.32
11.323	8.989	lurker.i2p	nginx/0.7.65
12.433	8.882	178.63.47.16	nginx/0.7.65

Clock Issues

Mitigation

- Attack can be hard to pull off because of network jitter
- Set clocks with a reliably and often used NTP server
- Some mitigation may take place in the darknet protocol itself

METADATA IN FILES

Overview

- Matadata is data about data
- Just a few files types that contain metadata
 - JPG
 EXIF (Exchangeable image file format)
 IPTC (International Press Telecommunications Council)
 - PDF
 - DOC
 - DOCX
 - EXE
 - XLS
 - XLSX
 - PNG
 - Too many to name them all
- Things stored: User names, edits, GPS info, network paths, MAC addresses in odd cases. It all depends on the file format.

Incidents: Pwned by Metadata

Cat Schwartz

Is that an unintended thumbnail in your EXIF data, or are you just happy to see me?

Dennis Rader (BTK Killer) Metadata in a Word DOC he sent to police had the name of his church, and last modified by "Dennis" in it.

Darkanaku/Nephew chan

A user on 4chan posts a pic of his semi-nude aunt taken with an iPhone, Anonymous pulls the EXIF GPS info from the file and hilarity ensues.

More details can be on the following VNSFW site:

http://encyclopediadramatica.com/User:Darkanaku/Nephew_chan

com/User:Darkanaku/Nephew chan

Irongeek.com

Mitigation

- Well, clean out the metadata, duh!
- Apps vary on how to do it

LOCAL ATTACKS

(at this point, it is already probably a lost cause)

Overview

- If they have access to the local box, your hosed
- Comes down to mostly traditional forensics
 - Data on hard drive
 - Cached data and URLs
 - Memory Forensics

Mitigations

- Anti-forensics
 http://www.irongeek.com/i.php?page=videos/anti-forensics-occult-computing
- Live CD/USB, but see Andrey Case's work: https://media.blackhat.com/bh-dc-11/Case/BlackHat DC 2011 Case De-Anonymizing Live CDs-wp.pdf
- Full hard drive encryption

SYBIL ATTACKS

Sock puppetry

Overview

- Ever heard of Sybil attacks?
- Think sock puppet, one entity acting as many
- May allow for control of routing, elections, etc.
- Makes many of the other attacks easier

Sock puppetry/Sybil

Mitigation

No absolute fixes

- Make it cost more to have nodes (hashcash)
- IP restrictions:
 Both Tor and I2P restrict peering between IPs on the same /16
- Central infrastructure may be more resilient against
 Sybil attacks (but has other issues)
- Peering strategies
- SybilLimit/SybilGuard/SybilInfer

TRAFFIC ANALYSIS ATTACKS

First/Last in chain attacks
Tagging attacks
Timing attacks

Overview

- There's much focus on this in academia, but I imagine application layer flaws are more likely to snag someone
- So many subtle variation on profiling traffic
- Could be:
 - Timing of data exchanges
 - Amount of traffic
 - Tagging of traffic by colluding peers
- Generally takes a powerful adversary
- Hard to defeat in "low latency" networks

I2P one-way tunnel mesh network: Logical view

12P one-way tunnel mesh network:

End point and exit point

Timing Correlation

Mitigation

- More routers
- More cover traffic (smaller needle in a larger haystack)
- Entry Guards for first hop
- One way tunnels
- Short lived tunnels may help, ends of tunnels act as rendezvous points
- Better peer profiling
- Signing of the data
- Fixed speeds
- Padding and Chaff
- Non-trivial delays and Batching

INTERSECTION/CORRELATION ATTACKS

Overview

- Could be as simple as knowing who is up when a hidden service can be accessed
- Techniques can be used to reduce the search set
- Application flaws and information leaks can narrow the anonymity set
- Harvesting attacks

Correlation

Cut down needed checks

Mitigation

- More nodes
- Give less data that could be used to reduce the anonymity set
- Make harvesting/scrapping attacks harder
- Checkout "De-anonymizing I2P" paper and talk I'll link to later

Links

Selected Papers in Anonymity http://www.freehaven.net/anonbib/

I2P's Threat Model Page http://www.i2p2.de/how threatmodel.html

General Darknets Talk

http://www.irongeek.com/i.php?page=videos/aide-winter-2011#Cipherspace/Darknets: anonymizing private networks

De-anonymizing I2P

http://www.irongeek.com/i.php?page=security/darknets-i2p-identifying-hidden-servers http://www.irongeek.com/i.php?page=videos/identifying-the-true-ip-network-identity-of-i2p-service-hosts-talk-adrian-crenshaw-blackhat-dc-2011

Thanks

- Conference organizers for having me
- Tenacity for helping get me to Defcon
- By buddies from Derbycon and the ISDPodcast
- Open Icon Library for some of my images http://openiconlibrary.sourceforge.net

Events

- DerbyCon 2011, Louisville KySept 30 Oct 2http://derbycon.com
- Louisville Infosec http://www.louisvilleinfosec.com
- Other Cons:

http://skydogcon.com

http://dojocon.org

http://hack3rcon.org

http://phreaknic.info

http://notacon.org

http://outerz0ne.org

QUESTIONS?

42

