
Virtunoid: Breaking out of KVM

Nelson Elhage

July 25, 2011

Nelson Elhage () Virtunoid: Breaking out of KVM July 25, 2011 1 / 42

Outline

1 KVM: Architecture overview
Attack Surface

2 CVE-2011-1751: The bug

3 virtunoid.c: The exploit
%rip control
Getting to shellcode
Bypassing ASLR

4 Conclusions and further research

5 Demo

Nelson Elhage () Virtunoid: Breaking out of KVM July 25, 2011 2 / 42

KVM: Architecture overview

KVM: The components

kvm.ko

kvm-intel.ko / kvm-amd.ko

qemu-kvm

Nelson Elhage () Virtunoid: Breaking out of KVM July 25, 2011 3 / 42

KVM: Architecture overview

kvm.ko

The core KVM kernel module

Provides ioctls for communicating with the kernel module.

Primarily responsible for emulating the virtual CPU and MMU

Emulates a few devices in-kernel for efficiency.

Contains an emulator for a subset of x86 used in handling certain
traps (!)

Nelson Elhage () Virtunoid: Breaking out of KVM July 25, 2011 4 / 42

KVM: Architecture overview

kvm-intel.ko / kvm-amd.ko

Provides support for Intel’s VMX and AMD’s SVM virtualization
extensions.

Relatively small compared to the rest of KVM (one .c file each)

Nelson Elhage () Virtunoid: Breaking out of KVM July 25, 2011 5 / 42

KVM: Architecture overview

qemu-kvm

Provides the most direct user interface to KVM.

Based on the classic qemu x86 emulator.

Implements the bulk of the virtual devices a VM uses.

Implements a wide variety of possible devices and buses.

An order of magnitude more code than the kernel module.

Nelson Elhage () Virtunoid: Breaking out of KVM July 25, 2011 6 / 42

KVM: Architecture overview

Control flow

Nelson Elhage () Virtunoid: Breaking out of KVM July 25, 2011 7 / 42

KVM: Architecture overview Attack Surface

kvm.ko

A tempting target – successful exploitation gets ring0 on the host
without further escalation.

Much less code than qemu-kvm, and much of that is dedicated to
interfacing with qemu-kvm, not the guest directly.

The x86 emulator is an interesting target.

A number of bugs have been discovered allowing privesc within the
guest.
A lot of tricky code that is not often exercised.
Not the target of this talk, but I have some ideas for future work.

Nelson Elhage () Virtunoid: Breaking out of KVM July 25, 2011 8 / 42

KVM: Architecture overview Attack Surface

qemu-kvm

A veritable goldmine of targets.

Hundreds of thousands of lines of device emulation code.

Emulated devices communicate directly with the guest via MMIO or
IO ports, lots of attack surface.

Much of the code comes straight from qemu and is ancient.

qemu-kvm is often sandboxed using SELinux or similar, meaning that
successful exploitation will often require a second privesc within the
host.

(Fortunately, Linux never has any of those)

Lots of bugs have been found here.

Nelson Elhage () Virtunoid: Breaking out of KVM July 25, 2011 9 / 42

CVE-2011-1751: The bug

RHSA-2011:0534-1

“It was found that the PIIX4 Power Management emulation layer in
qemu-kvm did not properly check for hot plug eligibility during device

removals. A privileged guest user could use this flaw to crash the guest or,
possibly, execute arbitrary code on the host. (CVE-2011-1751)”

Nelson Elhage () Virtunoid: Breaking out of KVM July 25, 2011 10 / 42

CVE-2011-1751: The bug

d i f f −−g i t a/hw/ a c p i p i i x 4 . c b/hw/ a c p i p i i x 4 . c
i nd ex 96 f5222 . . 6 c 9 0 8 f f 100644
−−− a/hw/ a c p i p i i x 4 . c
+++ b/hw/ a c p i p i i x 4 . c
@@ −471,11 +471 ,13 @@ s t a t i c vo i d p c i e j w r i t e (vo i d *opaque , u i n t 3 2 t addr , u i n t 3 2 t v a l)

BusState *bus = opaque ;
Dev i c eS t a t e *qdev , *next ;
PCIDev ice *dev ;

+ PC IDev i c e I n f o * i n f o ;
i n t s l o t = f f s (v a l) − 1 ;

QLIST FOREACH SAFE(qdev , &bus−>c h i l d r e n , s i b l i n g , nex t) {
dev = DO UPCAST(PCIDevice , qdev , qdev) ;

− i f (PCI SLOT(dev−>dev fn) == s l o t) {
+ i n f o = c o n t a i n e r o f (qdev−>i n f o , PCIDev i ce In fo , qdev) ;
+ i f (PCI SLOT(dev−>dev fn) == s l o t && ! i n f o−>no ho tp l ug) {

q d e v f r e e (qdev) ;
}

}

Nelson Elhage () Virtunoid: Breaking out of KVM July 25, 2011 11 / 42

CVE-2011-1751: The bug

PIIX4

The PIIX4 was a Southbridge chip used in many circa-2000 Intel
chipsets.

The default southbridge emulated by qemu-kvm

Includes ACPI support, a PCI-ISA bridge, an embedded MC146818
RTC, and much more.

Nelson Elhage () Virtunoid: Breaking out of KVM July 25, 2011 12 / 42

CVE-2011-1751: The bug

Device Hotplug

The PIIX4 supports PCI hotplug, implemented by writing values to IO
port 0xae08.

qemu-kvm emulates this by calling qdev_free(qdev);, which is
supposed to make sure the device is properly disconnected.

Certain devices don’t properly support being hotplugged, but KVM
previously didn’t check this before freeing them.

Nelson Elhage () Virtunoid: Breaking out of KVM July 25, 2011 13 / 42

CVE-2011-1751: The bug

The PCI-ISA bridge

In particular, it should not be possible to unplug the ISA bridge.

Among other things, the emulated MC146818 RTC hangs off the ISA
bridge.

KVM’s emulated RTC is not designed to be unplugged; In particular,
it leaves around dangling QEMUTimer objects when unplugged.

Nelson Elhage () Virtunoid: Breaking out of KVM July 25, 2011 14 / 42

CVE-2011-1751: The bug

The real-time clock

t y p e d e f s t r u c t RTCState {
u i n t 8 t cmos data [1 2 8] ;
. . .
/* second update */
i n t 6 4 t n e x t s e c o n d t i m e ;
. . .

QEMUTimer * s e c o n d t i m e r ;
QEMUTimer * s e c o n d t i m e r 2 ;

} RTCState ;

Nelson Elhage () Virtunoid: Breaking out of KVM July 25, 2011 15 / 42

CVE-2011-1751: The bug

The real-time clock

s t a t i c i n t r t c i n i t f n (ISADev ice *dev)
{

RTCState * s = DO UPCAST(RTCState , dev , dev) ;
. . .
s−>s e c ond t ime r = qemu new t imer ns (r t c c l o c k , r t c upda t e s e c ond , s) ;
s−>s e cond t ime r 2 = qemu new t imer ns (r t c c l o c k , r t c upda t e s e cond2 , s) ;

s−>ne x t s e c ond t ime =
qemu ge t c l o c k n s (r t c c l o c k) + (g e t t i c k s p e r s e c () * 99) / 100 ;

qemu mod timer (s−>s e cond t ime r2 , s−>ne x t s e c ond t ime) ;
. . .

}

Nelson Elhage () Virtunoid: Breaking out of KVM July 25, 2011 16 / 42

CVE-2011-1751: The bug

QEMUTimer

s t r u c t QEMUTimer {
QEMUClock * c l o c k ;
i n t 6 4 t e x p i r e t i m e ; /* i n nanoseconds */
QEMUTimerCB *cb ;
v o i d *opaque ;
s t r u c t QEMUTimer * n e x t ;

} ;

Nelson Elhage () Virtunoid: Breaking out of KVM July 25, 2011 17 / 42

CVE-2011-1751: The bug

RTC timers

...

(s−>second_timer)
rtc_update_second

(s−>second_timer2)
rtc_update_second2

1.1s1s

Update in progress Update in progress

2s 2.1s
Time

rtc_update_second
(s−>second_timer)

rtc_update_second2
(s−>second_timer2)

Nelson Elhage () Virtunoid: Breaking out of KVM July 25, 2011 18 / 42

CVE-2011-1751: The bug

Use-after-free

Unplugging the virtual RTC free()s the RTCState

It doesn’t free() or unregister either of the timers.

So we’re left with dangling pointers from the QEMUTimers

Nelson Elhage () Virtunoid: Breaking out of KVM July 25, 2011 19 / 42

virtunoid.c: The exploit

1 KVM: Architecture overview
Attack Surface

2 CVE-2011-1751: The bug

3 virtunoid.c: The exploit
%rip control
Getting to shellcode
Bypassing ASLR

4 Conclusions and further research

5 Demo

Nelson Elhage () Virtunoid: Breaking out of KVM July 25, 2011 20 / 42

virtunoid.c: The exploit %rip control

High-level TODO

Inject a controlled QEMUTimer into qemu-kvm at a known address

Eject the emulated ISA bridge

Force an allocation into the freed RTCState, with second_timer

pointing at our dummy timer.

Nelson Elhage () Virtunoid: Breaking out of KVM July 25, 2011 21 / 42

virtunoid.c: The exploit %rip control

Injecting data

The guest’s RAM is backed by a simple mmap()ed region inside the
qemu-kvm process.

So we allocate an object in the guest, and compute

hva = physmem_base

+ (gva_to_gfn(gva) << PAGE_SHIFT)
+ page_offset(hva)

hva host virtual address
gva guest virtual address
gfn guest frame (physical page) number

For now, assume we can guess physmem_base (e.g. no ASLR)

Nelson Elhage () Virtunoid: Breaking out of KVM July 25, 2011 22 / 42

virtunoid.c: The exploit %rip control

fs/proc/task_mmu.c

/*
* / proc / p id /pagemap − an a r r a y mapping v i r t u a l pages to p fn s
*

* For each page i n the add r e s s space , t h i s f i l e c o n t a i n s
* one 64− b i t e n t r y c o n s i s t i n g o f the f o l l o w i n g :
*

* B i t s 0−55 page frame number (PFN) i f p r e s e n t
* B i t s 0−4 swap type i f swapped
* B i t s 5−55 swap o f f s e t i f swapped
* B i t s 55−60 page s h i f t (page s i z e = 1<<page s h i f t)
* Bi t 61 r e s e r v e d f o r f u t u r e use
* Bi t 62 page swapped
* Bi t 63 page p r e s e n t
*/

Nelson Elhage () Virtunoid: Breaking out of KVM July 25, 2011 23 / 42

virtunoid.c: The exploit %rip control

qemu-kvm userspace network stack

qemu-kvm contains a user-mode networking stack.

Implements a DHCP server, DNS server, and a gateway NAT.

The user-mode stack normally handles packets synchronously.

To prevent recursion, if a second packet is emitted while handling a
first packet, the second packet is queued, using malloc().

The virtual network gateway responds to ICMP ping.

Nelson Elhage () Virtunoid: Breaking out of KVM July 25, 2011 24 / 42

virtunoid.c: The exploit %rip control

Putting it all together

1 Allocate a fake QEMUTimer

Point ->cb at the desired %rip.
Set ->expire to something small (e.g. 0).

2 Calculate its address in the host.

3 Write 2 to IO port 0xae08 to eject the ISA bridge.

4 ping the emulated gateway with ICMP packets containing pointers to
your allocated timer in the host.

Nelson Elhage () Virtunoid: Breaking out of KVM July 25, 2011 25 / 42

virtunoid.c: The exploit Getting to shellcode

We’ve got %rip, now what?

Options:

Get EIP = 0x41414141 and declare victory.

Disable NX in my BIOS and call it good enough for a demo.

Do a ROP pivot, ROP to victory.

????

Nelson Elhage () Virtunoid: Breaking out of KVM July 25, 2011 26 / 42

virtunoid.c: The exploit Getting to shellcode

Another look at QEMUTimer

s t r u c t QEMUTimer {
. . .
s t r u c t QEMUTimer * n e x t ;
. . .

} ;

Nelson Elhage () Virtunoid: Breaking out of KVM July 25, 2011 27 / 42

virtunoid.c: The exploit Getting to shellcode

qemu_run_timers

s t a t i c v o i d q e m u r u n t i m e r s (QEMUClock * c l o c k)
{

QEMUTimer ** p t i m e r h e a d , * t s ;
i n t 6 4 t c u r r e n t t i m e ;

c u r r e n t t i m e = q e m u g e t c l o c k n s (c l o c k) ;
p t i m e r h e a d = &a c t i v e t i m e r s [c l o c k−>t y p e] ;
f o r (; ;) {

t s = * p t i m e r h e a d ;
i f (! q e m u t i m e r e x p i r e d n s (ts , c u r r e n t t i m e))

b r e a k ;
* p t i m e r h e a d = ts−>n e x t ;
t s−>n e x t = NULL ;

ts−>cb (ts−>opaque) ;
}

}

Nelson Elhage () Virtunoid: Breaking out of KVM July 25, 2011 28 / 42

virtunoid.c: The exploit Getting to shellcode

Timer chains

We don’t just control %rip – we control a QEMUTimer object that is
going to get dispatched by qemu_run_timers.

In particular, we can control ->next.

So we can chain fake timers, and make multiple one-argument calls in
a row.

We can fake other structs to get the first argument.

qemu_run_timers doesn’t touch %rsi in any version of qemu-kvm
I’ve examined.

Nelson Elhage () Virtunoid: Breaking out of KVM July 25, 2011 29 / 42

virtunoid.c: The exploit Getting to shellcode

Getting to mprotect

Find a function (“F”) that makes a three-arg function call based on
struct(s) passed as arguments one and two.

Construct appropriate fake structures.

Construct a timer chain that

Does a call to set up %rsi based on a first argument in %rdi.
Does a call to F that mprotect()s one or more pages in the guest
physmem map.
Calls shellcode stored in those pages.

Nelson Elhage () Virtunoid: Breaking out of KVM July 25, 2011 30 / 42

virtunoid.c: The exploit Getting to shellcode

Why this trickery?

Continued execution is dead simple.

Reduced dependence on details of compiled code.

I’m not that good at ROP :)

Nelson Elhage () Virtunoid: Breaking out of KVM July 25, 2011 31 / 42

virtunoid.c: The exploit Bypassing ASLR

Addresses

We need at least two addresses

The base address of the qemu-kvm binary, to find code addresses.
physmem_base, the address of the physical memory mapping inside
qemu-kvm.

Nelson Elhage () Virtunoid: Breaking out of KVM July 25, 2011 32 / 42

virtunoid.c: The exploit Bypassing ASLR

Option A

Find an information leak.

Nelson Elhage () Virtunoid: Breaking out of KVM July 25, 2011 33 / 42

virtunoid.c: The exploit Bypassing ASLR

Option B

Assume non-PIE, and be clever.

Nelson Elhage () Virtunoid: Breaking out of KVM July 25, 2011 34 / 42

virtunoid.c: The exploit Bypassing ASLR

fw_cfg

Emulated IO ports 0x510 (address) and 0x511 (data)

Used to communicate various tables to the qemu BIOS (e820 map,
ACPI tables, etc)

Also provides support for exporting writable tables to the BIOS.

However, fw_cfg_write doesn’t check if the target table is supposed
to be writable!

Nelson Elhage () Virtunoid: Breaking out of KVM July 25, 2011 35 / 42

virtunoid.c: The exploit Bypassing ASLR

hw/pc.c

s t a t i c s t r u c t e 8 2 0 t a b l e e 8 2 0 t a b l e ;
s t r u c t h p e t f w c o n f i g h p e t c f g = { . count = UINT8 MAX} ;

. . .
f w c f g = f w c f g i n i t (BIOS CFG IOPORT , BIOS CFG IOPORT + 1 , 0 , 0) ;

f w c f g a d d b y t e s (f w c f g , FW CFG E820 TABLE , (u i n t 8 t *)& e 8 2 0 t a b l e ,
s i z e o f (s t r u c t e 8 2 0 t a b l e)) ;

f w c f g a d d b y t e s (f w c f g , FW CFG HPET , (u i n t 8 t *)& h p e t c f g ,
s i z e o f (s t r u c t h p e t f w c o n f i g)) ;

Nelson Elhage () Virtunoid: Breaking out of KVM July 25, 2011 36 / 42

virtunoid.c: The exploit Bypassing ASLR

read4 your way to victory

Net result: nearly 500 writable bytes inside a static variable.

mprotect needs a page-aligned address, so these aren’t suitable for
our shellcode.

But, we can construct fake timer chains in this space to build a
read4() primitive.

Use that to find physmem_base

Proceed as before.

Nelson Elhage () Virtunoid: Breaking out of KVM July 25, 2011 37 / 42

virtunoid.c: The exploit Bypassing ASLR

Repeated timer chaining

Previously, we ended timer chains with ->next = NULL.

Instead, end them with a timer that calls rtc_update_second to
reschedule the timer every second.

Now we can execute a read4, update structures based on the result,
and then hijack the list again.

Nelson Elhage () Virtunoid: Breaking out of KVM July 25, 2011 38 / 42

Conclusions and further research

Possible hardening directions

Sandbox qemu-kvm (work underway well before this talk).

Build qemu-kvm as PIE.

Keep memory in a file in tmpfs and lazily mmap as-needed for DMA?

XOR-encode key function pointers?

More auditing and fuzzing of qemu-kvm!

Nelson Elhage () Virtunoid: Breaking out of KVM July 25, 2011 39 / 42

Conclusions and further research

Future research directions

Fuzzing/auditing kvm.ko (That x86 emulator sketches me)

Fingerprinting qemu-kvm versions

Searching for infoleaks (Rosenbugs?)

Nelson Elhage () Virtunoid: Breaking out of KVM July 25, 2011 40 / 42

Demo

It’s demo time

Nelson Elhage () Virtunoid: Breaking out of KVM July 25, 2011 41 / 42

Demo

Questions?

Nelson Elhage () Virtunoid: Breaking out of KVM July 25, 2011 42 / 42

	KVM: Architecture overview
	Attack Surface

	CVE-2011-1751: The bug
	virtunoid.c: The exploit
	%rip control
	Getting to shellcode
	Bypassing ASLR

	Conclusions and further research
	Demo

