We are Here to Help: How FIPS 140 Helps (and Hurts) Security

Agenda

- Who Am I?
- Background
- What is FIPS 140?
- How the validation process works
- Look at the Requirements
- Best/Worst of the Requirements
- What does the future hold?
- Closing/Q&A

Who is l0stkn0wledge?

- Work directly with FIPS 140
 - Over five years experience
 - Seen hundreds of various implementations
- Outside Interests
 - Programmer
 - Lock picker
 - Security Enthusiast

Why am I Here?

- Want to shine a new light on security standards
- Standards often maligned by people as meaningless
 - I suggest they are a good starting point
 - Some guidance better than none at all
- Standards don't protect against everything
 - Standards become dated take long to maintain
 - Enforcement is still on the administrator or end-user
 - Can provide a false sense of security

What is FIPS 140?

- Federal Information Processing Standard 140
 - Defines requirements for cryptographic systems for use in sensitive government systems
- Cryptographic Module Validation Program (CMVP)
 - National Institute of Standards and Technology
 - Communications Security Establishment of Canada
- Has begun seeing acceptance in other nongovernment arenas

Past, Present, and Future of FIPS 140

- Previous revision was FIPS 140-1
 - Originally published in 1994
 - Items tested under this standard are still valid
- The current standard if FIPS 140-2
 - Originally published in 2001
- The future is with FIPS 140-3
 - Currently in draft form, publishing date unknown
 - Drafting of the standard began in 2005

How Does the Process Work?

- Validations are handled by three parties
 - Product vendors
 - Accredited Labs (Over 15 labs exist)
 - CMVP (both NIST and CSEC)
- Number of labs leads to variance in the testing process
- Government reviews lab reports and issues certificates

Diving into the Requirements

- Three key components to FIPS 140-2
 - FIPS 140-2 Standard
 - FIPS 140-2 Derived Test Requirements (DTR)
 - FIPS 140-2 Implementation Guidance (IG)
- Requirements are divided into eleven sections
- Four increasing levels of security defined
- All documents are available from NIST
 - http://csrc.nist.gov/groups/STM/cmvp/standards.html

FIPS 140-2 Standard

- The core of FIPS 140
 - Original document from which the other two are derived
- Defines the requirements of the standard and the terminology used
- The document can sometimes be vague and open to interpretation

Derived Test Requirements

- Much longer document that details required information
- Organized into Assertions (AS)
 - Direct statements taken from the standard
- Each AS may contain:
 - Vendor Evidence (VEs)
 - Documentation and implementation required from vendors
 - Tester Evidence (TEs)
 - Requirements of documentation review and testing for the labs

Implementation Guidance

- Smallest of the documents
- Intended to provide clarification of other documents
- Supposedly cannot introduce new requirements
 - This doesn't really hold true
- Ties back to both the Standard and the Derived Test Requirements

Document Mapping

generation, and is contained within a defined cryptographic boundary. A cryptographic module shall implement at least one Approved security function used in an Approved mode of operation. Non-Approved security functions may also be included for use in non-Approved modes of operation. The operator shall be able to determine when an Approved mode of operation is selected. For Security Levels 1 and 2, the cryptographic module security policy may specify when a cryptographic module is performing in an

AS01.03: (Levels 1, 2, 3, and 4) The operator shall be able to determine when an Approved mode of operation is selected.

Required Vendor Information

VE01.03.01: The vendor provided nonproprietary security policy shall provide a description of the Approved mode of operation.

1.2 FIPS Approved Mode of Operation

Applicable Levels:	All
Original Publishing Date:	03/15/2004
Effective Date:	03/15/2004
Last Modified Date:	09/12/2005
Relevant Assertions:	AS01.02, AS01.03 and AS01.04
Relevant Test Requirements:	TE01.03.01-02 and TE01.04.01-12
Relevant Vendor Requirements:	VE01.03.01-02 and VE01.04.01-02

Eleven Sections of Security

- 1. Cryptographic Module Specification
- 2. Cryptographic Ports and Interfaces
- 3. Roles, Services and Authentication
- 4. Finite State Model
- 5. Physical Security

- 6. Operational Environment
- 7. Cryptographic Key Management
- 8.EMI/EMC
- 9. Self-Tests
- 10.Design Assurance
- 11. Mitigation of Other Attacks

Take Out Documentation Requirements

- 1. Cryptographic Module Specification
- 2. Cryptographic Ports and Interfaces
- 3. Roles, Services and Authentication
- 4. Finite State Model
- 5. Physical Security

- 6. Operational Environment
- 7. Cryptographic Key Management
- 8.EMI/EMC
- 9. Self-Tests
- 10.Design Assurance
- 11. Mitigation of Other Attacks

Cryptographic Module Specification

- Defines the approved behavior of the validated module
- At Level 1 and 2, the behavior is enforced by user configuration.
 - Potential for errors to be injected in the method
 - Policies can be inconsistent and vague
- At Level 3 and 4, the behavior is enforced through configuration.
 - Stronger restriction but can be limiting to users

Cryptographic Module Ports and Interfaces

- Views the module as a black box
- Defines requirements for types of data flow
- At Level 1 and 2, no physical or logical separation of critical data
- At Level 3 and 4, physical or logical separation of critical data entry/output. Plaintext keys entered via "trusted path" or directly attached cable.

Roles, Services and Authentication

- The name says it all
- At Level 1, no authentication
- At Level 2, role-based authentication
 - No accountability
 - Password lengths can be enforced through policy
- At Level 3 and 4, identity-based authentication
 - Users are uniquely identified and credentialed
 - Password requirements are system enforced

Password Requirements

- Fall well short of required security
 - 1 in 1,000,000 chance of success
 - Met by a simple 4-character alphanumeric password
 - No restriction on types of passwords
 - 1 in 100,000 chance of multiple successes
 - Typically enforced via lockout
 - Ignores long-term attacks, requirement based on one minute
- The future might be brighter (more to come)

Physical Security

- Not applicable to software modules
- Requirements divided by module embodiment
 - Single chip, multi-chip standalone, multi-chip embedded
- No physical security at Level 1
- At Level 2, opacity and tamper evidence
- At Level 3, tamper response
- At Level 4, tamper detection

What is Opacity?

- Subjective requirement on visibility of system internals
- Ventilation can be tricky for many networking modules
- The interpretation has changed over time
 - Previously seeing make/manufacture of components was required
 - Now it seems even profile and outline of components is sufficient visibility

Opacity Examples

Tamper Evidence and Response

- At Level 2, it must be apparent an attacker compromised the module
 - Limited testing makes this a weak requirement
 - Labs cannot "add new materials"
- At Level 3, the module must respond to tamper if doors/covers removed
 - Stronger requirement for modules with doors/covers
 - Requires keys to be zeroized and includes requirements for powerless zeroization

Operational Environment

- At Level 1, "single-user mode"
 - Definition has changed over time
 - Original definition is unrealistic
- At Level 2+, the requirement for CC validated operating systems
 - Greatly limits the platforms that can be supported
 - Questionable improvement of security over Level 1

Cryptographic Key Management

- Random Number Generation
- Key Generation
- Key Establishment
- Key Entry/Output
 - Only requirements that varies across levels
- Key Storage
 - Requirements are mostly meaningless
- Key Zeroization

Random Number and Key Generation

- Requirements for approved RNGs
 - Only deterministic RNGs are listed as approved
- Symmetric key generation just makes use of approved RNGs
- Asymmetric key generation must follow approved methods
 - Methods are described in FIPS 140-2 Annex A
 - Currently includes FIPS 186-2/3 and ANSI X9.31

Key Establishment and Entry/Output

- Requirements vary by distribution method
- Manual Distribution
 - Largely impractical but relatively secure methods
 - Secure Carrier, Key loader, tokens, etc.
- Electronic Distribution
 - Keys over unsecured media (LAN, WAN, etc.)
 - TLS, SSH, Diffie-Hellman
- Manual distribution can be plaintext at low levels
- Electronic distribution is always encrypted

Key Storage and Zeroization

- No requirement for the form of stored keys
- Other requirements for storage are vague at best
 - · "Association" of key and "entity"
- Key zeroization is simply overwriting of keys
 - Using 0's, 1's or random data
 - This service needs to exist for all plaintext keys
 - Can be performed procedurally, doesn't need to be automatic (except for tamper at Level 3/4)

Self-Tests

- Power-up Self-Tests
 - Health checks of the approved algorithms
 - Integrity tests for firmware/software
- Conditional self-tests
 - Performed on certain operations
 - Continuous RNG Test
 - Pairwise consistency test
 - Firmware load test
 - Bypass Test
 - Manual Key Entry Test

Best and Worst of the Requirements

Best

- 1. Enforcing stronger algorithms
- 2. Physical security at higher levels
- 3. Bypass tests

Worst

- 1. Limitations on physical security testing
- 2. Limited zeroization requirement
- 3. Hardware centric
- 4. No key storage protection required.
- 5.Ignorant of side-channel attacks

The Future is Yet to Come

- New revision of the standard is being drafted
 - FIPS 140-3, over 7 years in development
- New requirements when (if) available:
 - Authentication enforced by module, no more enduser control over password length, format, etc.
 - Side-channel testing requirements at higher levels, at a minimum for single-chip modules
 - Improved zeroization requirements, limitations of procedural zeroization

The Future is ???

- Unclear, the timeline has been changed before
- Best guesses are 2012/2013
- New requirements analysis is purely speculative
 - Current public draft is dated
 - Newer NIST internal drafts likely have some changes
- Improvement over FIPS 140-2, still not perfect

Summary

- FIPS 140-2 provides some good requirements that can improved upon baseline security
- While it is a good first step, it doesn't guarantee you are any safer
- Recommend incorporating some of the good into projects

Important Links

- http://csrc.nist.gov/groups/STM/cmvp/
- http://csrc.nist.gov/groups/STM/cavp/
- http://csrc.nist.gov/groups/STM/cmvp/standards.h

•

Q&A