
Jon McCoy

www.DigitalBodyGuard.com

Hacking .NET Applications:

The Black Arts

Why .NET

Countermeasures

Skill Level Needed

Will this work on every

.NET application

BACKGROUND

How-To Attack .NET Applications

Tools and Methodology of Attacking

Overcome “secure” .NET Applications

Building KeyGen/Crack/Hacks/Malware

Reverse Engenerring for Protection

THIS WILL COVER

Attacking/Cracking

IN MEM ||| ON DISK

ATTACK OVERVIEW

Attack on Disk
Access Logic

Debug

Recompile

Attack in Memory/Runtime
Inject Target App

Edit/Control Structure

Decompile

Infect Logic

Hook Logic

Navigate Structure

Attack The Source

Find the weak spot

Subvert the Logic/State

In Memory OR On Disk

Control what you need

Do your Reconnaissance

ATTACKING ON DISK

DEMO
GrayWolf – IL_Spy – Reflector

101 - DECOMPILERS

101 - ATTACK ON DISK

Decompile - Get code/tech

Infect - Change the target's code

Remold Application - WIN

Exploit - Take advantage

Connect/Open - Access Code

THE WEAK SPOTS

Flip The Check

Set Value is “True”

Cut The Logic

Return True

Access Value

FLIP THE CHECKSET VALUE TO “TRUE”

bool Registered = false;bool Registered = true;bool Registered = false;

If(a!=b)If(a==b)If(a==b)

RETURN TRUE

bool IsRegistered()

{

Return “TRUE”;

}

RETURN TRUE

bool IsValidKey(string x)

{

Return “TRUE”;

}

CUT THE LOGIC

string sqlClean(string x)

{

Return x;

}

ACCESS VALUE

bool ValidPassword(int x)

{

ShowKey(Pass);

Return (x==Pass);

}

ATTACK SECURITY

Microsoft

Media Center

CRACK

PASSWORD

CRACK

PASSWORD

Return True;

CRACK

DEMO

REGISTRATION CHECK

KeyGens

Cracks

CRACK THE KEY

Public/Private

3/B==Name*ID*7

Call Server

Demo = True;

Complex Math

==

==

==

==

== Complex Math

Change Key

ASK what is /B?

Hack the Call

Set Value

1% of the time the KeyGen is given

PUBLIC/PRIVATE KEY

If you can beat them

Why join them

Key = “F5PA11JS32DA”

Key = “123456ABCDE”

SERVER CALL

1. Fake the Call

2. Fake the Request

3. Fake the Reply

4. Win

“Send”

SystemID = 123456789

Registered = True

Reg Code = f3V541

REG CODE REPLAY

Name:

Code: ==

JON DOE

98qf3uy
!=

*C5G9P3

FAIL

Name:

Code:

*C

5G9P3

REG CODE REPLAY

Name:

Code: ==

JON DOE

5G9P3
==

*C5G9P3

WIN

REG CODE REPLAY

COMPLEX MATH

1. Chop up the Math

2. Attack the Weak

3. ??????????

4. Profit

DEMO

CRACK A KEY

IL – Intermediate Language

Code of the Matrix |||| NEW ASM

IT CAN’T BE THAT EZ

NO

PROTECTION ON DISK

Protection - Security by 0b$cur17y
Code Obfuscation

Shells / Packers / Encrypted(code)

Logic Obfuscation

Unmanaged calls………….

Try to SHUTDOWN

Decompilation

PROTECTION ON DISK
0bfu$ca7ed

PROTECTION ON DISK

Signed code (1024 bit CRYPTO)

Strong Names

Try to SHUTDOWN

Tampering

Protection – Security by security

Verify the creator

ACLs……… M$ stuff

STRONG NAME

Example Strong Name:

Simple Name

Public Key TokenStrongName: EXESample, Version=1.0.4203.24068,

Culture=neutral, PublicKeyToken=2a79b79e3c411f38

EXESample, Version=1.0.4203.24068,

Culture=neutral, PublicKeyToken=2a79b79e3c411f38

Version

Culture

Most of the time PublicKeyToken=null

PRIVET KEY SIGNING
Signed code is based on

Private Key - 1024 bit

Signed Hash of Code

………..

Identify and Verify the Author

UNPROTECTED/PROTECTED

IT CAN BE THAT EZ

YESNONO

’T‘T

PRIVET KEY SIGNING
Signed code is based on

Private Key - 1024 bit

Signed Hash of Code

………..

SIGNED CODE CHECKING IS

OFF BY DEFAULT

ATTACK VECTOR

STRONG NAME HACKING

PublicKeyToken=

b77a5c561934e089

PublicKeyToken=
683127632be2c302

STRONG NAME HACKING

FAKE SIGNED DLL

FAKE SIGNED DLL

[HKEY_LOCAL_MACHINE

\SOFTWARE\Microsoft\.NETFramework]

"AllowStrongNameBypass"=dword:00000000

Turn Key Checking ON

FAKE SIGNED DLL

ERROR

FAKE SIGNED EXE

FAKE SIGN DLL/EXE

GLOBAL ASSEMBLY CASH
--THE GAC--

What is the GAC?

How to access the GAC?

Attacking from the GAC?

ATTACK VECTOR

GLOBAL ASSEMBLY CASH

C:\Windows\assembly\

GLOBAL ASSEMBLY CASH

C:\Windows\assembly\

GLOBAL ASSEMBLY CASH
GAC

\GAC – Installed/Sandbox

\GAC_32 – 32bit-(x86)

\GAC_64 – 64bit-(x64)

\GAC_MSIL – MSIL(ANY)

NATIVE IMAGE(NI)
GAC

\NativeImages_v2.0.50727_32

\NativeImages_v2.0.50727_64

\NativeImages_v4.0.30319_32

\NativeImages_v4.0.30319_64

VER 1.1 - is dead 

VER 2.0 & 3.5

VER 4.0

VER 3.0 - is dead 

GAC

C:\Windows\assembly\

C:\Windows\winsxs\

C:\Windows\Microsoft.NET

So much GAC!!!!!!!!!!!!!!!!!!!

ATTACK THE GAC

ATTACK FROM THE GAC

ATTACK FROM THE GAC

NativeImages

GAC

ATTACK THE GAC

1. Delete the Native Image

2. Replace File in GAC

3. Hack Target from GAC

ATTACK FROM THE GAC

ATTACK FROM FRAMEWORK

.NET Framework

ASM THE OLD IS NEW
ATTACK VECTOR

Shell Code - ASM

UNmanaged

NO .NET Security

Exicute ASM Attack with

Unmanaged Calls or Reflection

………..

FAKE SIGNED DLL

THE OLD IS NEW AGAIN

ASM-SHELLS

Attack from a lower level

Brake the “safe” security

ASM-Shells.…  shells…

Attack the Runtime

The Power of ASM

VISUAL STUDIO
Exploit – Run arbitrary code

First noted in 2004

Demo
PowerShell - Matrix

Get developer Keys
Attack the SVN & DB

Virus Malware

Attacking/Cracking

IN MEM |||| ON DISK

ATTACKING .NET
APPLICATIONS: AT RUNTIME

WHY AT RUNTIME

SECURITY

SYSTEMS

Hacks

Cracks

Malware

Backdoors

Inject at Runtime

GrayDragonC++

DLL

.NET

DLL

Inject At Runtime

Inject At Runtime

ATTACKING APPS

Gain Full Access

Reverse Engineer

Attack (in MEM)

Take out the “Security”

Control the Program

PAST TALKS

Hacking .NET Application:
A Runtime Attack

Control the Runtime
Control the Application

DEMO: GOD MODE

Inject and Control

SO YOU’RE NOT A HACKER
WHY SHOULD YOU CARE?

Defend your Applications

Defend your Systems

Verify your Tools\Programs

VERIFY YOUR
APPLICATIONS

What is the Crypto & KEY

What info is it sending home

Does it have Backdoors?

Is your data Secure?

REVERSE ENGINEERING

What is going on?

What technology is used?

Any MaLWare?

Threat Level?

What is the security?

Take Control

Don't be helpless

Know you Threats

LOOK INSIDE

DON’T LOOK

Keys

Crypto

DB
BackDoors

Good Code

Technology
Weak Spots

Data Leaks

Reg Code

Bad Code

MalWare

Passwords

SECURITY

The Login security check is

Does A == B

Does MD5%5 == X

Is the Pass the Crypto Key

DATA LEAK

The Data sent home is

Application Info

User / Registartion Info

Security / System Info

KEY

The Crypto Key is

A Hard Coded Key

The Licence Number

A MD5 Hash of the Pass

6Salt 6MD5 Hash of the Pass

CRYPTO

The Crypto is

DES 64

Tripple DES 192

Rijndael AES 256

Home MIX (secure/unsecure)

So your malware

How do you hide

Fake (Signed DLL Protection)

Protection (Obfuscated Code)

Attack (Unmanaged Calls)

Protection (Shell Crypto)

Intelligent names

Code style

Don’t use loops

Don’t use one
area for your Vars

Use Timers

Link to Events

REUSE The TARGET

Call back into
your target

Spread out your
Vars and Code

Access the
normal program

Protect Me! 2010

Androsa FileProtector

Protect Me! 2010

Androsa FileProtector

Good Crypto

Salt & VI

Encrypted Pass

B

0b$cur17y

Password SHA512

Custom Crypto LIB’s

Possible Back DoorProtect Me! 2010

Androsa FileProtector

http://www.aisto.com/roeder/dotnet/Default.aspx?Target=code://mscorlib:2.0.0.0:b77a5c561934e089/System.Security.Cryptography.Rijndael
http://www.aisto.com/roeder/dotnet/Default.aspx?Target=code://mscorlib:2.0.0.0:b77a5c561934e089/System.Security.Cryptography.Rijndael
http://www.aisto.com/roeder/dotnet/Default.aspx?Target=code://mscorlib:2.0.0.0:b77a5c561934e089/System.Security.Cryptography.Rijndael
http://www.aisto.com/roeder/dotnet/Default.aspx?Target=code://mscorlib:2.0.0.0:b77a5c561934e089/System.Security.Cryptography.Rijndael
http://www.aisto.com/roeder/dotnet/Default.aspx?Target=code://mscorlib:2.0.0.0:b77a5c561934e089/System.Security.Cryptography.Rijndael
http://www.aisto.com/roeder/dotnet/Default.aspx?Target=code://mscorlib:2.0.0.0:b77a5c561934e089/System.Security.Cryptography.Rijndael
http://www.aisto.com/roeder/dotnet/Default.aspx?Target=code://mscorlib:2.0.0.0:b77a5c561934e089/System.Security.Cryptography.Rijndael

DEMO

PROTECTION FOR WHO?

Infect Obfuscated App

0bfu$ca73

WHAT M$ DID RIGHT

Un-obfuscated Code
∑ Good for user security

∑ User can see what they are running

.NET Framework Security
∑ Targeted Security Access

∑ Protect the Computer from the app

Giving Reduced Rights Inside Code
∑ Put venerable code in a box

∑ Mitigate & Segment Risk

RIGHT

MixModeCode – Bad for security
∑ This allows ASM\C++\C code

∑ This breaks out of .NET security

GAC & Native Image Override
∑ Removes ability to secure code

Not Hash Checking Code
∑ Good for hackers

WHAT M$ DID RIGHTWRONG

ATTACKING APPS

Read my papers: Reflections Hidden Power &

Attacking .NET at Runtime

Watch 2010 Presentations on Attacking .NET

DefCon 18, AppSec-DC, DojoCon

Look up Presentations and Research from

Andrew Willson, Erez Ezule, Arndet Mandent

Use tools: Visual Studio/MonoDev

Reflector/GrayWolf/ILspy/…/ILASM/ILDASM

FIN

www.DigitalBodyGuard.com

MORE INFORMATION @:

FIN = 1

HACKER VS ATTACKER

101 - Recon

File Location
C:\Windows\ehome\ehshell.dll

StrongName KEY
d:\w7rtm.public.x86fre\internal\strongnamekeys\fake\windows.snk

Registry CurrentUser OR LocalMachine
SOFTWARE\Microsoft\Windows\CurrentVersion\Media Center\

Web Host Address
www.microsoft.com/WindowsMedia/Services/2003/10/10/movie

101 - Recon

EHSHELL

Windows
Media Center

.NET Framework

Ver 3.5

Un-0bfu$ca7ed
Crash Reporting

Watson

Coded in C#

